When.com Web Search

  1. Ads

    related to: reinforcement learning for game playing activities

Search results

  1. Results From The WOW.Com Content Network
  2. MuZero - Wikipedia

    en.wikipedia.org/wiki/MuZero

    MuZero (MZ) is a combination of the high-performance planning of the AlphaZero (AZ) algorithm with approaches to model-free reinforcement learning. The combination allows for more efficient training in classical planning regimes, such as Go, while also handling domains with much more complex inputs at each stage, such as visual video games.

  3. Multi-agent reinforcement learning - Wikipedia

    en.wikipedia.org/wiki/Multi-agent_reinforcement...

    Multi-agent reinforcement learning (MARL) is a sub-field of reinforcement learning. It focuses on studying the behavior of multiple learning agents that coexist in a shared environment. [ 1 ] Each agent is motivated by its own rewards, and does actions to advance its own interests; in some environments these interests are opposed to the ...

  4. AlphaDev - Wikipedia

    en.wikipedia.org/wiki/AlphaDev

    AlphaDev is an artificial intelligence system developed by Google DeepMind to discover enhanced computer science algorithms using reinforcement learning.AlphaDev is based on AlphaZero, a system that mastered the games of chess, shogi and go by self-play.

  5. AlphaZero - Wikipedia

    en.wikipedia.org/wiki/AlphaZero

    AlphaZero is a generic reinforcement learning algorithm – originally devised for the game of go – that achieved superior results within a few hours, searching a thousand times fewer positions, given no domain knowledge except the rules."

  6. What the hell is reinforcement learning and how does it work?

    www.aol.com/hell-reinforcement-learning-does...

    Reinforcement learning is a behavioral learning model where the algorithm provides data analysis feedback, directing the user to the best result. It enables an agent to learn through the ...

  7. Self-play - Wikipedia

    en.wikipedia.org/wiki/Self-play

    In multi-agent reinforcement learning experiments, researchers try to optimize the performance of a learning agent on a given task, in cooperation or competition with one or more agents. These agents learn by trial-and-error, and researchers may choose to have the learning algorithm play the role of two or more of the different agents.

  8. Warehouse robot uses AI to play real-life Tetris to handle ...

    www.aol.com/warehouse-robot-uses-ai-play...

    Adaptive intelligence: Trained using Sim2Real reinforcement learning, AmbiStack can make real-time decisions, adapting to various scenarios and delivering a faster return on investment.

  9. Machine learning in video games - Wikipedia

    en.wikipedia.org/.../Machine_learning_in_video_games

    The most publicly known application of machine learning in games is likely the use of deep learning agents that compete with professional human players in complex strategy games. There has been a significant application of machine learning on games such as Atari/ALE, Doom, Minecraft, StarCraft, and car racing. [1]