When.com Web Search

  1. Ad

    related to: electrostatics practice problems with answers for chemistry 221 quizlet

Search results

  1. Results From The WOW.Com Content Network
  2. List of unsolved problems in chemistry - Wikipedia

    en.wikipedia.org/wiki/List_of_unsolved_problems...

    Protein folding problem: Is it possible to predict the secondary, tertiary and quaternary structure of a polypeptide sequence based solely on the sequence and environmental information? Inverse protein-folding problem: Is it possible to design a polypeptide sequence which will adopt a given structure under certain environmental conditions?

  3. Electrostatics - Wikipedia

    en.wikipedia.org/wiki/Electrostatics

    Therefore, the electrostatic field everywhere inside a conductive object is zero, and the electrostatic potential is constant. The electric field, E {\displaystyle \mathbf {E} } , in units of Newtons per Coulomb or volts per meter, is a vector field that can be defined everywhere, except at the location of point charges (where it diverges to ...

  4. Coulomb barrier - Wikipedia

    en.wikipedia.org/wiki/Coulomb_barrier

    In practice, temperatures needed to overcome the Coulomb barrier turned out to be smaller than expected due to quantum mechanical tunnelling, as established by Gamow. The consideration of barrier-penetration through tunnelling and the speed distribution gives rise to a limited range of conditions where fusion can take place, known as the Gamow ...

  5. Gauss's law - Wikipedia

    en.wikipedia.org/wiki/Gauss's_law

    Strictly speaking, Gauss's law cannot be derived from Coulomb's law alone, since Coulomb's law gives the electric field due to an individual, electrostatic point charge only. However, Gauss's law can be proven from Coulomb's law if it is assumed, in addition, that the electric field obeys the superposition principle .

  6. Coulomb's law - Wikipedia

    en.wikipedia.org/wiki/Coulomb's_law

    The electrostatic force experienced by , according to Newton's third law, is =. If both charges have the same sign (like charges) then the product q 1 q 2 {\displaystyle q_{1}q_{2}} is positive and the direction of the force on q 1 {\displaystyle q_{1}} is given by r ^ 12 {\textstyle {\widehat {\mathbf {r} }}_{12}} ; the charges repel each other.

  7. Thomson problem - Wikipedia

    en.wikipedia.org/wiki/Thomson_problem

    The Thomson problem also plays a role in the study of other physical models including multi-electron bubbles and the surface ordering of liquid metal drops confined in Paul traps. The generalized Thomson problem arises, for example, in determining arrangements of protein subunits that comprise the shells of spherical viruses. The "particles" in ...

  8. Poisson–Boltzmann equation - Wikipedia

    en.wikipedia.org/wiki/Poisson–Boltzmann_equation

    The Poisson–Boltzmann equation can be applied to biomolecular systems. One example is the binding of electrolytes to biomolecules in a solution. This process is dependent upon the electrostatic field generated by the molecule, the electrostatic potential on the surface of the molecule, as well as the electrostatic free energy. [13]

  9. Non-covalent interaction - Wikipedia

    en.wikipedia.org/wiki/Non-covalent_interaction

    Non-covalent interactions can be classified into different categories, such as electrostatic, π-effects, van der Waals forces, and hydrophobic effects. [3] [2] Non-covalent interactions [4] are critical in maintaining the three-dimensional structure of large molecules, such as proteins and nucleic acids.