Ad
related to: henderson hasselbalch equation questions
Search results
Results From The WOW.Com Content Network
The Henderson–Hasselbalch equation can be used to estimate the pH of a buffer solution by approximating the actual concentration ratio as the ratio of the analytical concentrations of the acid and of a salt, MA. The equation can also be applied to bases by specifying the protonated form of the base as the acid.
The Henderson–Hasselbalch equation, which is derived from the law of mass action, can be modified with respect to the bicarbonate buffer system to yield a simpler equation that provides a quick approximation of the H + or HCO − 3 concentration without the need to calculate logarithms: [7]
In this case H 0 and H − are equivalent to pH values determined by the buffer equation or Henderson-Hasselbalch equation. However, an H 0 value of −21 (a 25% solution of SbF 5 in HSO 3 F) [5] does not imply a hydrogen ion concentration of 10 21 mol/dm 3: such a "solution" would have a density more than a hundred times greater than a neutron ...
Speciation of ions refers to the changing concentration of varying forms of an ion as the pH of the solution changes. [1]The ratio of acid, AH and conjugate base, A −, concentrations varies as the difference between the pH and the pK a varies, in accordance with the Henderson-Hasselbalch equation.
Hence, the pK of each buffer will dictate the ratio of the concentrations of its base and weak acid forms at the given pH, in accordance with the Henderson-Hasselbalch equation. Any condition that changes the balance of one of the buffer systems, also changes the balance of all the others because the buffer systems actually buffer one another ...
The pK a 1 ⁄ 2 is equal to the Henderson–Hasselbalch pK a (pK HH a ) if the titration curve follows the Henderson–Hasselbalch equation . [ 14 ] Most p K a calculation methods silently assume that all titration curves are Henderson–Hasselbalch shaped, and p K a values in p K a calculation programs are therefore often determined in this way.
This is why weak acids are better absorbed from the stomach and weak bases from intestine where the pH is alkaline. When pH of a solution is equal to pKa of dissolved drug, then 50% of the drug is ionized, another 50% is unionized. This is described by the Henderson-Hasselbalch equation. [citation needed]
The Henderson-Hasselbalch equation offers a way to determine the proportion of a substance that is ionized at a given pH. In the stomach, drugs that are weak acids (such as aspirin ) will be present mainly in their non-ionic form, and weak bases will be in their ionic form.