Search results
Results From The WOW.Com Content Network
A hyperintensity or T2 hyperintensity is an area of high intensity on types of magnetic resonance imaging (MRI) scans of the brain of a human or of another mammal that reflect lesions produced largely by demyelination and axonal loss.
Fluid-attenuated inversion recovery (FLAIR) is a magnetic resonance imaging sequence with an inversion recovery set to null fluids. For example, it can be used in brain imaging to suppress cerebrospinal fluid (CSF) effects on the image, so as to bring out the periventricular hyperintense lesions, such as multiple sclerosis (MS) plaques. [ 1 ]
The term "leukoaraiosis" was coined in 1986 [6] [7] by Hachinski, Potter, and Merskey as a descriptive term for rarefaction ("araiosis") of the white matter, showing up as decreased density on CT and increased signal intensity on T2/FLAIR sequences (white matter hyperintensities) performed as part of MRI brain scans.
ARIA MRI Classification Criteria [11] ARIA Type Radiographic Severity Mild Moderate Severe ARIA-E Edema: FLAIR hyperintensity confined to sulcus and/or cortex/subcortical white matter in one location < 5 cm FLAIR hyperintensity 5 to 10 cm, or more than 1 site of involvement, each measuring < 10 cm
Fluid-attenuated inversion recovery (FLAIR) [2] is an inversion-recovery pulse sequence used to nullify the signal from fluids. For example, it can be used in brain imaging to suppress cerebrospinal fluid so as to bring out periventricular hyperintense lesions, such as multiple sclerosis plaques.
Dawson's Fingers appearing on an MRI scan. Multiple sclerosis and other demyelinating diseases of the central nervous system (CNS) produce lesions (demyelinated areas in the CNS) and glial scars or scleroses. They present different shapes and histological findings according to the underlying condition that produces them.
Fluid attenuated inversion recovery (FLAIR) vascular hyperintensity (FVH) is a radiographic marker seen on brain imaging in acute ischaemic stroke. FVH can be used as a proxy for slow leptomeningeal collateral blood flow, and may help reveal which areas of brain tissue are potentially salvageable.
Central pontine myelinolysis; Other names: Osmotic demyelination syndrome, central pontine demyelination: Axial fat-saturated T2-weighted image showing hyperintensity in the pons with sparing of the peripheral fibers, the patient was an alcoholic admitted with a serum Na of 101 treated with hypertonic saline, he was left with quadriparesis, dysarthria, and altered mental status