Search results
Results From The WOW.Com Content Network
An example of Neyman–Pearson hypothesis testing (or null hypothesis statistical significance testing) can be made by a change to the radioactive suitcase example. If the "suitcase" is actually a shielded container for the transportation of radioactive material, then a test might be used to select among three hypotheses: no radioactive source ...
Example of the water-level task. In 1, a bottle of water sits upright on a table, with the water level marked in blue. In 2, the bottle has been tilted on its side (in this case, by 45 degrees). The respondent must mark the new water level.
Edward Jenner tests his hypothesis for the protective action of mild cowpox infection for smallpox, the first vaccine (1796). Gregor Mendel's experiments with the garden pea led him to surmise many of the fundamental laws of genetics (dominant vs recessive genes, the 1–2–1 ratio, see Mendelian inheritance) (1856–1863).
An example might be the hypothesis that "if I release this ball, it will fall to the floor": this suggestion can then be tested by carrying out the experiment of letting go of the ball, and observing the results. Formally, a hypothesis is compared against its opposite or null hypothesis ("if I release this ball, it will not fall to the floor ...
The sample standard deviations for the two samples are approximately 0.05 and 0.11, respectively. For such small samples, a test of equality between the two population variances would not be very powerful. Since the sample sizes are equal, the two forms of the two-sample t-test will perform similarly in this example.
The hypothesis of Andreas Cellarius, showing the planetary motions in eccentric and epicyclical orbits. A hypothesis (pl.: hypotheses) is a proposed explanation for a phenomenon. A scientific hypothesis must be based on observations and make a testable and reproducible prediction about reality, in a process beginning with an educated guess or ...
A statistical significance test starts with a random sample from a population. If the sample data are consistent with the null hypothesis, then you do not reject the null hypothesis; if the sample data are inconsistent with the null hypothesis, then you reject the null hypothesis and conclude that the alternative hypothesis is true. [3]
Falsifiability or defeasibility, which means that counterexamples to the hypothesis are logically possible. The practical feasibility of observing a reproducible series of such counterexamples if they do exist. In short, a hypothesis is testable if there is a possibility of deciding whether it is true or false based on experimentation by anyone.