When.com Web Search

  1. Ads

    related to: bayesian model and data analysis

Search results

  1. Results From The WOW.Com Content Network
  2. Bayesian statistics - Wikipedia

    en.wikipedia.org/wiki/Bayesian_statistics

    Exploratory analysis of Bayesian models is an adaptation or extension of the exploratory data analysis approach to the needs and peculiarities of Bayesian modeling. In the words of Persi Diaconis: [17] Exploratory data analysis seeks to reveal structure, or simple descriptions in data. We look at numbers or graphs and try to find patterns.

  3. Bayesian inference - Wikipedia

    en.wikipedia.org/wiki/Bayesian_inference

    In the objective or "non-informative" current, the statistical analysis depends on only the model assumed, the data analyzed, [56] and the method assigning the prior, which differs from one objective Bayesian practitioner to another. In the subjective or "informative" current, the specification of the prior depends on the belief (that is ...

  4. Bayesian probability - Wikipedia

    en.wikipedia.org/wiki/Bayesian_probability

    The term Bayesian derives from the 18th-century mathematician and theologian Thomas Bayes, who provided the first mathematical treatment of a non-trivial problem of statistical data analysis using what is now known as Bayesian inference. [8]: 131 Mathematician Pierre-Simon Laplace pioneered and popularized what is now called Bayesian probability.

  5. Bayesian linear regression - Wikipedia

    en.wikipedia.org/wiki/Bayesian_linear_regression

    Bayesian linear regression is a type of conditional modeling in which the mean of one variable is described by a linear combination of other variables, with the goal of obtaining the posterior probability of the regression coefficients (as well as other parameters describing the distribution of the regressand) and ultimately allowing the out-of-sample prediction of the regressand (often ...

  6. Bayesian hierarchical modeling - Wikipedia

    en.wikipedia.org/wiki/Bayesian_hierarchical_modeling

    Bayesian hierarchical modelling is a statistical model written in multiple levels (hierarchical form) that estimates the parameters of the posterior distribution using the Bayesian method. [1] The sub-models combine to form the hierarchical model, and Bayes' theorem is used to integrate them with the observed data and account for all the ...

  7. Bayesian network - Wikipedia

    en.wikipedia.org/wiki/Bayesian_network

    A Bayesian network (also known as a Bayes network, Bayes net, belief network, or decision network) is a probabilistic graphical model that represents a set of variables and their conditional dependencies via a directed acyclic graph (DAG). [1]

  8. Bayesian information criterion - Wikipedia

    en.wikipedia.org/wiki/Bayesian_information_criterion

    In statistics, the Bayesian information criterion (BIC) or Schwarz information criterion (also SIC, SBC, SBIC) is a criterion for model selection among a finite set of models; models with lower BIC are generally preferred.

  9. Bayes factor - Wikipedia

    en.wikipedia.org/wiki/Bayes_factor

    The Bayes factor is a ratio of two competing statistical models represented by their evidence, and is used to quantify the support for one model over the other. [1] The models in question can have a common set of parameters, such as a null hypothesis and an alternative, but this is not necessary; for instance, it could also be a non-linear model compared to its linear approximation.