Search results
Results From The WOW.Com Content Network
An example of a concave polygon. A simple polygon that is not convex is called concave, [1] non-convex [2] or reentrant. [3] A concave polygon will always have at least one reflex interior angle—that is, an angle with a measure that is between 180 degrees and 360 degrees exclusive. [4]
Non-convex: a line may be found which meets its boundary more than twice. Equivalently, there exists a line segment between two boundary points that passes outside the polygon. Simple: the boundary of the polygon does not cross itself. All convex polygons are simple. Concave: Non-convex and simple. There is at least one interior angle greater ...
A set that is not convex is called a non-convex set. A polygon that is not a convex polygon is sometimes called a concave polygon, [4] and some sources more generally use the term concave set to mean a non-convex set, [5] but most authorities prohibit this usage. [6] [7]
An example of a convex polygon: a regular pentagon.. In geometry, a convex polygon is a polygon that is the boundary of a convex set.This means that the line segment between two points of the polygon is contained in the union of the interior and the boundary of the polygon.
The term convex is often referred to as convex down or concave upward, and the term concave is often referred as concave down or convex upward. [3] [4] [5] If the term "convex" is used without an "up" or "down" keyword, then it refers strictly to a cup shaped graph .
X marks convex corners; O marks concave corners. Blue lines are knobs; red lines are anti-knobs; yellow lines are neither. A rectilinear polygon has corners of two types: corners in which the smaller angle (90°) is interior to the polygon are called convex and corners in which the larger angle (270°) is interior are called concave. [1]
Convex hull ( in blue and yellow) of a simple polygon (in blue) The convex hull of a simple polygon encloses the given polygon and is partitioned by it into regions, one of which is the polygon itself. The other regions, bounded by a polygonal chain of the polygon and a single convex hull edge, are called pockets.
A function f is concave over a convex set if and only if the function −f is a convex function over the set. The sum of two concave functions is itself concave and so is the pointwise minimum of two concave functions, i.e. the set of concave functions on a given domain form a semifield.