Search results
Results From The WOW.Com Content Network
A reference to a standard or choice-free presentation of some mathematical object (e.g., canonical map, canonical form, or canonical ordering). The same term can also be used more informally to refer to something "standard" or "classic". For example, one might say that Euclid's proof is the "canonical proof" of the infinitude of primes.
Domain-specific terms must be recategorized into the corresponding mathematical domain. If the domain is unclear, but reasonably believed to exist, it is better to put the page into the root category:mathematics, where it will have a better chance of spotting and classification. See also: Glossary of mathematics
A mathematical symbol is a figure or a combination of figures that is used to represent a mathematical object, an action on mathematical objects, a relation between mathematical objects, or for structuring the other symbols that occur in a formula.
For example, a fraction is put in lowest terms by cancelling out the common factors of the numerator and the denominator. [2] As another example, if a × b = a × c , then the multiplicative term a can be canceled out if a ≠0, resulting in the equivalent expression b = c ; this is equivalent to dividing through by a .
Mathematical puzzles require mathematics to solve them. Logic puzzles are a common type of mathematical puzzle. Conway's Game of Life and fractals, as two examples, may also be considered mathematical puzzles even though the solver interacts with them only at the beginning by providing a set of initial conditions. After these conditions are set ...
This is a list of axioms as that term is understood in mathematics. In epistemology, the word axiom is understood differently; see axiom and self-evidence. Individual axioms are almost always part of a larger axiomatic system.
What Is Mathematics? is a mathematics book written by Richard Courant and Herbert Robbins, published in England by Oxford University Press. It is an introduction to mathematics, intended both for the mathematics student and for the general public. First published in 1941, it discusses number theory, geometry, topology and calculus.
Discrete mathematics is the study of mathematical structures that are fundamentally discrete rather than continuous.In contrast to real numbers that have the property of varying "smoothly", the objects studied in discrete mathematics – such as integers, graphs, and statements in logic [1] – do not vary smoothly in this way, but have distinct, separated values. [2]