When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Random forest - Wikipedia

    en.wikipedia.org/wiki/Random_forest

    Centered forest [45] is a simplified model for Breiman's original random forest, which uniformly selects an attribute among all attributes and performs splits at the center of the cell along the pre-chosen attribute.

  3. Out-of-bag error - Wikipedia

    en.wikipedia.org/wiki/Out-of-bag_error

    Only patients in the bootstrap sample would be used to train the model for that bag. This example shows how bagging could be used in the context of diagnosing disease. A set of patients are the original dataset, but each model is trained only by the patients in its bag. The patients in each out-of-bag set can be used to test their respective ...

  4. Jackknife variance estimates for random forest - Wikipedia

    en.wikipedia.org/wiki/Jackknife_Variance...

    In some classification problems, when random forest is used to fit models, jackknife estimated variance is defined as: ^ = ...

  5. Ensemble learning - Wikipedia

    en.wikipedia.org/wiki/Ensemble_learning

    Common applications of ensemble learning include random forests (an extension of bagging), Boosted Tree models, and Gradient Boosted Tree Models. Models in applications of stacking are generally more task-specific — such as combining clustering techniques with other parametric and/or non-parametric techniques.

  6. Bootstrap aggregating - Wikipedia

    en.wikipedia.org/wiki/Bootstrap_aggregating

    The random forest classifier operates with a high accuracy and speed. [11] Random forests are much faster than decision trees because of using a smaller dataset. To recreate specific results, it is necessary to keep track of the exact random seed used to generate the bootstrap sets.

  7. Random subspace method - Wikipedia

    en.wikipedia.org/wiki/Random_subspace_method

    The random subspace method has been used for decision trees; when combined with "ordinary" bagging of decision trees, the resulting models are called random forests. [5] It has also been applied to linear classifiers, [6] support vector machines, [7] nearest neighbours [8] [9] and other types of classifiers.

  8. Decision tree - Wikipedia

    en.wikipedia.org/wiki/Decision_tree

    The bootstrapped dataset helps remove the bias that occurs when building a decision tree model with the same data the model is tested with. The ability to leverage the power of random forests can also help significantly improve the overall accuracy of the model being built. This method generates many decisions from many decision trees and ...

  9. Random tree - Wikipedia

    en.wikipedia.org/wiki/Random_tree

    Random forest, a machine-learning classifier based on choosing random subsets of variables for each tree and using the most frequent tree output as the overall classification Branching process , a model of a population in which each individual has a random number of children