Search results
Results From The WOW.Com Content Network
There are additional names used for ions with multiple charges. For example, an ion with a −2 charge is known as a dianion and an ion with a +2 charge is known as a dication. A zwitterion is a neutral molecule with positive and negative charges at different locations within that molecule. [17]
An ion is an atom (or group of atoms) that has lost one or more electrons, giving it a net positive charge (cation), or that has gained one or more electrons, giving it a net negative charge (anion). Monatomic ions are formed from single atoms, while polyatomic ions are formed from two or more atoms that have been bonded together, in each case ...
The hydrogen anion, H −, is a negative ion of hydrogen, that is, a hydrogen atom that has captured an extra electron. The hydrogen anion is an important constituent of the atmosphere of stars, such as the Sun. In chemistry, this ion is called hydride. The ion has two electrons bound by the electromagnetic force to a nucleus containing one proton.
A hydrogen atom is made up of a nucleus with charge +1, and a single electron. Therefore, the only positively charged ion possible has charge +1. It is noted H +. Depending on the isotope in question, the hydrogen cation has different names: Hydron: general name referring to the positive ion of any hydrogen isotope (H +)
Ionization or ionisation is the process by which an atom or a molecule acquires a negative or positive charge by gaining or losing electrons, often in conjunction with other chemical changes. The resulting electrically charged atom or molecule is called an ion .
The circumstances under which a compound will have ionic or covalent character can typically be understood using Fajans' rules, which use only charges and the sizes of each ion. According to these rules, compounds with the most ionic character will have large positive ions with a low charge, bonded to a small negative ion with a high charge. [25]
A chemical charge can be found by using the periodic table. An element's placement on the periodic table indicates whether its chemical charge is negative or positive. Looking at the table, one can see that the positive charges are on the left side of the table and the negative charges are on the right side of the table.
This polarization of the negative ion leads to a build-up of extra charge density between the two nuclei, that is, to partial covalency. Larger negative ions are more easily polarized, but the effect is usually important only when positive ions with charges of 3+ (e.g., Al 3+) are involved.