When.com Web Search

  1. Ads

    related to: hardened concrete pullout strength scale calculator cost near me images

Search results

  1. Results From The WOW.Com Content Network
  2. Creep and shrinkage of concrete - Wikipedia

    en.wikipedia.org/.../Creep_and_shrinkage_of_concrete

    Changes of pore water content due to drying or wetting processes cause significant volume changes of concrete in load-free specimens. They are called the shrinkage (typically causing strains between 0.0002 and 0.0005, and in low strength concretes even 0.0012) or swelling (< 0.00005 in normal concretes, < 0.00020 in high strength concretes).

  3. Concrete cone failure - Wikipedia

    en.wikipedia.org/wiki/Concrete_cone_failure

    The tension failure loads predicted by the CCD method fits experimental results over a wide range of embedment depth (e.g. 100 – 600 mm). [2] Anchor load bearing capacity provided by ACI 349 does not consider size effect, thus an underestimated value for the load-carrying capacity is obtained for large embedment depths.

  4. Engineered cementitious composite - Wikipedia

    en.wikipedia.org/wiki/Engineered_cementitious...

    Unlike regular concrete, ECC has a tensile strain capacity in the range of 3–7%, [1] compared to 0.01% for ordinary portland cement (OPC) paste, mortar or concrete. ECC therefore acts more like a ductile metal material rather than a brittle glass material (as does OPC concrete), leading to a wide variety of applications.

  5. Properties of concrete - Wikipedia

    en.wikipedia.org/wiki/Properties_of_concrete

    Twenty eight days is a long wait to determine if desired strengths are going to be obtained, so three-day and seven-day strengths can be useful to predict the ultimate 28-day compressive strength of the concrete. A 25% strength gain between 7 and 28 days is often observed with 100% OPC (ordinary Portland cement) mixtures, and between 25% and 40 ...

  6. Schmidt hammer - Wikipedia

    en.wikipedia.org/wiki/Schmidt_hammer

    The test hammer hits the concrete at a defined energy. Its rebound is dependent on the hardness of the concrete and is measured by the test equipment. By reference to a conversion chart, the rebound value can be used to determine the concrete's compressive strength. When conducting the test, the hammer should be held at right angles to the ...

  7. Concrete degradation - Wikipedia

    en.wikipedia.org/wiki/Concrete_degradation

    The curing of concrete when it continues to harden after its initial setting and progressively develops its mechanical strength is a critical phase to avoid unwanted cracks in concrete. Depending on the temperature (summer or winter conditions) and thus on the cement hydration kinetics controlling the setting and hardening rate of concrete ...

  8. Size effect on structural strength - Wikipedia

    en.wikipedia.org/wiki/Size_Effect_on_Structural...

    For most normal-scale applications to metals and fine-grained ceramics, except for micrometer scale devices, the size is large enough for the Weibull theory to apply (but not for coarse-grained materials such as concrete). From Eq. 2 one can show that the mean strength and the coefficient of variation of strength are obtained as follows:

  9. Water–cement ratio - Wikipedia

    en.wikipedia.org/wiki/Water–cement_ratio

    A w/c ratio higher than 0.60 is not acceptable as fresh concrete becomes "soup" [2] and leads to a higher porosity and to very poor quality hardened concrete as publicly stated by Prof. Gustave Magnel (1889-1955, Ghent University, Belgium) during an official address to American building contractors at the occasion of one of his visits in the ...