When.com Web Search

  1. Ads

    related to: hardened concrete pullout strength scale calculator cost near me for sale

Search results

  1. Results From The WOW.Com Content Network
  2. Concrete cone failure - Wikipedia

    en.wikipedia.org/wiki/Concrete_cone_failure

    The tension failure loads predicted by the CCD method fits experimental results over a wide range of embedment depth (e.g. 100 – 600 mm). [2] Anchor load bearing capacity provided by ACI 349 does not consider size effect, thus an underestimated value for the load-carrying capacity is obtained for large embedment depths.

  3. Creep and shrinkage of concrete - Wikipedia

    en.wikipedia.org/.../Creep_and_shrinkage_of_concrete

    Changes of pore water content due to drying or wetting processes cause significant volume changes of concrete in load-free specimens. They are called the shrinkage (typically causing strains between 0.0002 and 0.0005, and in low strength concretes even 0.0012) or swelling (< 0.00005 in normal concretes, < 0.00020 in high strength concretes).

  4. Rockwell hardness test - Wikipedia

    en.wikipedia.org/wiki/Rockwell_hardness_test

    The superficial Rockwell scales use lower loads and shallower impressions on brittle and very thin materials. The 45N scale employs a 45-kgf load on a diamond cone-shaped Brale indenter, and can be used on dense ceramics. The 15T scale employs a 15-kgf load on a 1 ⁄ 16-inch-diameter (1.588 mm) hardened steel ball, and can be used on sheet metal.

  5. Schmidt hammer - Wikipedia

    en.wikipedia.org/wiki/Schmidt_hammer

    The test hammer hits the concrete at a defined energy. Its rebound is dependent on the hardness of the concrete and is measured by the test equipment. By reference to a conversion chart, the rebound value can be used to determine the concrete's compressive strength. When conducting the test, the hammer should be held at right angles to the ...

  6. Vickers hardness test - Wikipedia

    en.wikipedia.org/wiki/Vickers_hardness_test

    If HV is first expressed in N/mm 2 (MPa), or otherwise by converting from kgf/mm 2, then the tensile strength (in MPa) of the material can be approximated as σ u ≈ HV/ c, where c is a constant determined by yield strength, Poisson's ratio, work-hardening exponent and geometrical factors – usually ranging between 2 and 4. [9]

  7. Universal testing machine - Wikipedia

    en.wikipedia.org/wiki/Universal_testing_machine

    Typical lectromechanical Universal Testing Machine Test fixture for three point flex test. A universal testing machine (UTM), also known as a universal tester, [1] universal tensile machine, materials testing machine, materials test frame, is used to test the tensile strength (pulling) and compressive strength (pushing), flexural strength, bending, shear, hardness, and torsion testing ...

  8. Brinell hardness test - Wikipedia

    en.wikipedia.org/wiki/Brinell_hardness_test

    It determines hardness through the scale of penetration of an indenter, loaded on a material test-piece. It is one of several definitions of hardness in materials science . The hardness scale is expressed as the Brinell Hardness Number ( BHN or BH ) and was named for Johan August Brinell , who developed the method in the early 20th century.

  9. Concrete - Wikipedia

    en.wikipedia.org/wiki/Concrete

    The early strength of the concrete can be increased if it is kept damp during the curing process. Minimizing stress prior to curing minimizes cracking. High-early-strength concrete is designed to hydrate faster, often by increased use of cement that increases shrinkage and cracking. The strength of concrete changes (increases) for up to three ...