When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Direct stiffness method - Wikipedia

    en.wikipedia.org/wiki/Direct_stiffness_method

    This form reveals how to generalize the element stiffness to 3-D space trusses by simply extending the pattern that is evident in this formulation. After developing the element stiffness matrix in the global coordinate system, they must be merged into a single “master” or “global” stiffness matrix.

  3. Finite element method in structural mechanics - Wikipedia

    en.wikipedia.org/wiki/Finite_element_method_in...

    This type of element is suitable for modeling cables, braces, trusses, beams, stiffeners, grids and frames. Straight elements usually have two nodes, one at each end, while curved elements will need at least three nodes including the end-nodes. The elements are positioned at the centroidal axis of the actual members.

  4. Extended finite element method - Wikipedia

    en.wikipedia.org/wiki/Extended_finite_element_method

    The finite element method has been the tool of choice since civil engineer Ray W. Clough in 1940 derived the stiffness matrix of a 3-node triangular finite element (and coined the name). The precursors of FEM were elements built-up from bars (Hrennikoff, Argyris, Turner) and a conceptual variation approach suggested by R. Courant.

  5. Stiffness matrix - Wikipedia

    en.wikipedia.org/wiki/Stiffness_matrix

    The full stiffness matrix A is the sum of the element stiffness matrices. In particular, for basis functions that are only supported locally, the stiffness matrix is sparse . For many standard choices of basis functions, i.e. piecewise linear basis functions on triangles, there are simple formulas for the element stiffness matrices.

  6. Galerkin method - Wikipedia

    en.wikipedia.org/wiki/Galerkin_method

    Examples of Galerkin methods are: the Galerkin method of weighted residuals, the most common method of calculating the global stiffness matrix in the finite element method, [3] [4] the boundary element method for solving integral equations, Krylov subspace methods. [5]

  7. Finite element method - Wikipedia

    en.wikipedia.org/wiki/Finite_element_method

    When applying FEA, the complex problem is usually a physical system with the underlying physics, such as the Euler–Bernoulli beam equation, the heat equation, or the Navier –Stokes equations, expressed in either PDEs or integral equations, while the divided, smaller elements of the complex problem represent different areas in the physical ...

  8. Structural analysis - Wikipedia

    en.wikipedia.org/wiki/Structural_analysis

    The assemblage of the various stiffness's into a master stiffness matrix that represents the entire structure leads to the system's stiffness or flexibility relation. To establish the stiffness (or flexibility) of a particular element, we can use the mechanics of materials approach for simple one-dimensional bar elements, and the elasticity ...

  9. Matrix method - Wikipedia

    en.wikipedia.org/wiki/Matrix_method

    The matrix method is a structural analysis method used as a fundamental principle in many applications in civil engineering. The method is carried out, using either a stiffness matrix or a flexibility matrix.