Search results
Results From The WOW.Com Content Network
The expected value of a random variable is the weighted average of the possible values it might take on, with the weights being the respective probabilities. More generally, the expected value of a function of a random variable is the probability-weighted average of the values the function takes on for each possible value of the random variable.
The weighted mean in this case is: ¯ = ¯ (=), (where the order of the matrix–vector product is not commutative), in terms of the covariance of the weighted mean: ¯ = (=), For example, consider the weighted mean of the point [1 0] with high variance in the second component and [0 1] with high variance in the first component.
Download as PDF; Printable version; ... Appearance. move to sidebar hide. In statistics, there are many applications ... Weighted mean; Weighted harmonic mean;
Since the probabilities must satisfy p 1 + ⋅⋅⋅ + p k = 1, it is natural to interpret E[X] as a weighted average of the x i values, with weights given by their probabilities p i. In the special case that all possible outcomes are equiprobable (that is, p 1 = ⋅⋅⋅ = p k), the weighted average is given by the standard average. In the ...
For normally distributed random variables inverse-variance weighted averages can also be derived as the maximum likelihood estimate for the true value. Furthermore, from a Bayesian perspective the posterior distribution for the true value given normally distributed observations and a flat prior is a normal distribution with the inverse-variance weighted average as a mean and variance ().
In statistics, the weighted geometric mean is a generalization of the geometric mean using the weighted arithmetic mean.. Given a sample = (, …,) and weights = (,, …,), it is calculated as: [1]
Linear least squares (LLS) is the least squares approximation of linear functions to data. It is a set of formulations for solving statistical problems involved in linear regression, including variants for ordinary (unweighted), weighted, and generalized (correlated) residuals.
Kernel average smoother example. The idea of the kernel average smoother is the following. For each data point X 0, choose a constant distance size λ (kernel radius, or window width for p = 1 dimension), and compute a weighted average for all data points that are closer than to X 0 (the closer to X 0 points get higher weights).