When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Cross-correlation matrix - Wikipedia

    en.wikipedia.org/wiki/Cross-correlation_matrix

    The cross-correlation matrix of two random vectors is a matrix containing as elements the cross-correlations of all pairs of elements of the random vectors. The cross-correlation matrix is used in various digital signal processing algorithms.

  3. Cosine similarity - Wikipedia

    en.wikipedia.org/wiki/Cosine_similarity

    The angle between two term frequency vectors cannot be greater than 90°. If the attribute vectors are normalized by subtracting the vector means (e.g., ¯), the measure is called the centered cosine similarity and is equivalent to the Pearson correlation coefficient. For an example of centering,

  4. Cross-correlation - Wikipedia

    en.wikipedia.org/wiki/Cross-correlation

    In time series analysis and statistics, the cross-correlation of a pair of random process is the correlation between values of the processes at different times, as a function of the two times. Let ( X t , Y t ) {\displaystyle (X_{t},Y_{t})} be a pair of random processes, and t {\displaystyle t} be any point in time ( t {\displaystyle t} may be ...

  5. NumPy - Wikipedia

    en.wikipedia.org/wiki/NumPy

    NumPy (pronounced / ˈ n ʌ m p aɪ / NUM-py) is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays. [3]

  6. Canonical correlation - Wikipedia

    en.wikipedia.org/wiki/Canonical_correlation

    In statistics, canonical-correlation analysis (CCA), also called canonical variates analysis, is a way of inferring information from cross-covariance matrices.If we have two vectors X = (X 1, ..., X n) and Y = (Y 1, ..., Y m) of random variables, and there are correlations among the variables, then canonical-correlation analysis will find linear combinations of X and Y that have a maximum ...

  7. Outer product - Wikipedia

    en.wikipedia.org/wiki/Outer_product

    In MATLAB, the function kron (A, B) is used for this product. These often generalize to multi-dimensional arguments, and more than two arguments. In the Python library NumPy, the outer product can be computed with function np.outer(). [8] In contrast, np.kron results in a flat array.

  8. Covariance matrix - Wikipedia

    en.wikipedia.org/wiki/Covariance_matrix

    Throughout this article, boldfaced unsubscripted and are used to refer to random vectors, and Roman subscripted and are used to refer to scalar random variables.. If the entries in the column vector = (,, …,) are random variables, each with finite variance and expected value, then the covariance matrix is the matrix whose (,) entry is the covariance [1]: 177 ...

  9. Vectorization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Vectorization_(mathematics)

    In Matlab/GNU Octave a matrix A can be vectorized by A(:). GNU Octave also allows vectorization and half-vectorization with vec(A) and vech(A) respectively. Julia has the vec(A) function as well. In Python NumPy arrays implement the flatten method, [note 1] while in R the desired effect can be achieved via the c() or as.vector() functions.