Search results
Results From The WOW.Com Content Network
In algebra, the zero-product property states that the product of two nonzero elements is nonzero. In other words, =, = = This property is also known as the rule of zero product, the null factor law, the multiplication property of zero, the nonexistence of nontrivial zero divisors, or one of the two zero-factor properties. [1]
A zero morphism in a category is a generalised absorbing element under function composition: any morphism composed with a zero morphism gives a zero morphism. Specifically, if 0 XY : X → Y is the zero morphism among morphisms from X to Y , and f : A → X and g : Y → B are arbitrary morphisms, then g ∘ 0 XY = 0 XB and 0 XY ∘ f = 0 AY .
Elements may be written in scientific notation as , where < and is the integer in the doubly infinite progression, and is called the decade. In the study of physical magnitudes, the order of decades provides positive and negative ordinals referring to an ordinal scale implicit in the ratio scale.
In mathematics, an identity element or neutral element of a binary operation is an element that leaves unchanged every element when the operation is applied. [1] [2] For example, 0 is an identity element of the addition of real numbers. This concept is used in algebraic structures such as groups and rings.
the group under multiplication of the invertible elements of a field, [1] ring, or other structure for which one of its operations is referred to as multiplication. In the case of a field F, the group is (F ∖ {0}, •), where 0 refers to the zero element of F and the binary operation • is the field multiplication, the algebraic torus GL(1).
The role of 0 as additive identity generalizes beyond elementary algebra. In abstract algebra, 0 is commonly used to denote a zero element, which is the identity element for addition (if defined on the structure under consideration) and an absorbing element for multiplication (if defined). (Such elements may also be called zero elements ...
Thus each row and column of the table is a permutation of all the elements in the group. This greatly restricts which Cayley tables could conceivably define a valid group operation. To see why a row or column cannot contain the same element more than once, let a, x, and y all be elements of a group, with x and y distinct.
For any element x in a ring R, one has x0 = 0 = 0x (zero is an absorbing element with respect to multiplication) and (–1)x = –x. If 0 = 1 in a ring R (or more generally, 0 is a unit element), then R has only one element, and is called the zero ring. If a ring R contains the zero ring as a subring, then R itself is the zero ring. [6]