Search results
Results From The WOW.Com Content Network
Three-state buffers can also be used to implement efficient multiplexers, especially those with large numbers of inputs. [1] Three-state buffers are essential to the operation of a shared electronic bus. Three-state logic can reduce the number of wires needed to drive a set of LEDs (tri-state multiplexing or Charlieplexing).
A three-state logic gate is a type of logic gate that can have three different outputs: high (H), low (L) and high-impedance (Z). The high-impedance state plays no role in the logic, which is strictly binary. These devices are used on buses of the CPU to allow multiple chips to send data.
In three-state logic, an output device can be in one of three possible states: 0, 1, or Z, with the last meaning high impedance. This is not a voltage or logic level, but means that the output is not controlling the state of the connected circuit.
One early calculating machine, built entirely from wood by Thomas Fowler in 1840, operated in balanced ternary. [4] [5] [3] The first modern, electronic ternary computer, Setun, was built in 1958 in the Soviet Union at the Moscow State University by Nikolay Brusentsov, [6] [7] and it had notable advantages over the binary computers that eventually replaced it, such as lower electricity ...
A digital circuit is typically constructed from small electronic circuits called logic gates that can be used to create combinational logic. Each logic gate is designed to perform a function of Boolean logic when acting on logic signals. A logic gate is generally created from one or more electrically controlled switches, usually transistors but ...
The 3-input majority gate output is 1 if two or more of the inputs of the majority gate are 1; output is 0 if two or more of the majority gate's inputs are 0. Thus, the majority gate is the carry output of a full adder, i.e., the majority gate is a voting machine. [7] The 3-input majority gate can be represented by the following boolean ...
An input-consuming logic gate L is reversible if it meets the following conditions: (1) L(x) = y is a gate where for any output y, there is a unique input x; (2) The gate L is reversible if there is a gate L´(y) = x which maps y to x, for all y. An example of a reversible logic gate is a NOT, which can be described from its truth table below:
The logic of here and there (HT, also referred as Smetanov logic SmT or as Gödel G3 logic), introduced by Heyting in 1930 [21] as a model for studying intuitionistic logic, is a three-valued intermediate logic where the third truth value NF (not false) has the semantics of a proposition that can be intuitionistically proven to not be false ...