Search results
Results From The WOW.Com Content Network
In eukaryote cells, RNA polymerase III (also called Pol III) is a protein that transcribes DNA to synthesize 5S ribosomal RNA, tRNA, and other small RNAs. The genes transcribed by RNA Pol III fall in the category of "housekeeping" genes whose expression is required in all cell types and most environmental conditions.
The steps of protein synthesis include transcription, translation, and post translational modifications. During transcription, RNA polymerase transcribes a coding region of the DNA in a cell producing a sequence of RNA, specifically messenger RNA (mRNA). This mRNA sequence contains codons: 3 nucleotide long segments that code for a specific ...
The signal recognition particle RNA, (also known as 7SL, 6S, ffs, or 4.5S RNA) is part of the signal recognition particle (SRP) ribonucleoprotein complex. SRP recognizes the signal peptide and binds to the ribosome, halting protein synthesis. SRP-receptor is a protein that is embedded in a membrane, and which contains a transmembrane pore.
The transcription, a complete set of general transcription factors and RNA polymerase need to be assembled at the core promoter to form the ~2.5 million Dalton preinitiation complex. [16] For example, for promoters that contain a TATA box near the TSS, the recognition of TATA box by the TBP subunit of TFIID initiates the assembly of a ...
The lactose operon (lac operon) is an operon required for the transport and metabolism of lactose in E. coli and many other enteric bacteria.Although glucose is the preferred carbon source for most enteric bacteria, the lac operon allows for the effective digestion of lactose when glucose is not available through the activity of β-galactosidase. [1]
This allows the RNA polymerase to bind to the mal promoter (#3). Transcription of malE, malF, and malG genes then proceeds (#4) as maltose activator protein and RNA polymerase moves down the DNA. [1] malE encodes for maltose-binding periplasmic protein and helps maltose transport across the cell membrane.
In eukaryotes, three kinds of RNA—rRNA, tRNA, and mRNA—are produced based on the activity of three distinct RNA polymerases, whereas, in prokaryotes, only one RNA polymerase exists to create all kinds of RNA molecules. [3] RNA polymerase II of eukaryotes transcribes the primary transcript, a transcript destined to be processed into mRNA ...
Central dogma of molecular biology: nucleosome – genetic code – codon – transcription factor – transcription – translation – RNA – histone – telomere; heterochromatin – promoter – RNA polymerase; Protein biosynthesis – ribosomes; Gene regulation. operon – activator – repressor – corepressor – enhancer ...