When.com Web Search

  1. Ad

    related to: induction proof for fibonacci sequence practice problems worksheet

Search results

  1. Results From The WOW.Com Content Network
  2. Zeckendorf's theorem - Wikipedia

    en.wikipedia.org/wiki/Zeckendorf's_theorem

    The first part of Zeckendorf's theorem (existence) can be proven by induction. For n = 1, 2, 3 it is clearly true (as these are Fibonacci numbers), for n = 4 we have 4 = 3 + 1. If n is a Fibonacci number then there is nothing to prove. Otherwise there exists j such that F j < n < F j + 1 .

  3. Fibonacci sequence - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_sequence

    Solution to Fibonacci rabbit problem: In a growing idealized population, the number of rabbit pairs form the Fibonacci sequence. At the end of the n th month, the number of pairs is equal to F n. Relation to the golden ratio

  4. Mathematical induction - Wikipedia

    en.wikipedia.org/wiki/Mathematical_induction

    Mathematical induction can be informally illustrated by reference to the sequential effect of falling dominoes. [1] [2]Mathematical induction is a method for proving that a statement () is true for every natural number, that is, that the infinitely many cases (), (), (), (), … all hold.

  5. Cassini and Catalan identities - Wikipedia

    en.wikipedia.org/wiki/Cassini_and_Catalan_identities

    A quick proof of Cassini's identity may be given (Knuth 1997, p. 81) by recognising the left side of the equation as a determinant of a 2×2 matrix of Fibonacci numbers. The result is almost immediate when the matrix is seen to be the n th power of a matrix with determinant −1:

  6. Liber Abaci - Wikipedia

    en.wikipedia.org/wiki/Liber_Abaci

    Although the resulting Fibonacci sequence dates back long before Leonardo, [9] its inclusion in his book is why the sequence is named after him today. The fourth section derives approximations, both numerical and geometrical, of irrational numbers such as square roots. [10] The book also includes proofs in Euclidean geometry. [11]

  7. Generalizations of Fibonacci numbers - Wikipedia

    en.wikipedia.org/wiki/Generalizations_of...

    A Fibonacci sequence of order n is an integer sequence in which each sequence element is the sum of the previous elements (with the exception of the first elements in the sequence). The usual Fibonacci numbers are a Fibonacci sequence of order 2.

  8. Solomonoff's theory of inductive inference - Wikipedia

    en.wikipedia.org/wiki/Solomonoff's_theory_of...

    The proof of this is derived from a game between the induction and the environment. Essentially, any computable induction can be tricked by a computable environment, by choosing the computable environment that negates the computable induction's prediction. This fact can be regarded as an instance of the no free lunch theorem.

  9. Lamé's theorem - Wikipedia

    en.wikipedia.org/wiki/Lamé's_theorem

    Lamé's Theorem is the result of Gabriel Lamé's analysis of the complexity of the Euclidean algorithm.Using Fibonacci numbers, he proved in 1844 [1] [2] that when looking for the greatest common divisor (GCD) of two integers a and b, the algorithm finishes in at most 5k steps, where k is the number of digits (decimal) of b.