Ads
related to: estimated humidity calculator from temperature
Search results
Results From The WOW.Com Content Network
Apparent temperature, also known as "feels like", [1] [2] is the temperature equivalent perceived by humans, caused by the combined effects of air temperature, relative humidity and wind speed. The measure is most commonly applied to the perceived outdoor temperature.
When the temperature is 30 °C (86 °F) and the dew point is 15 °C (59 °F), the humidex is 34. If the temperature remains 30 °C (86 °F) and the dew point rises to 25 °C (77 °F), the humidex rises to 42. The humidex is higher than the U.S. heat index at equal temperature and relative humidity. The humidex formula is as follows: [7] [8]
In hot summer weather, a rise in relative humidity increases the apparent temperature to humans (and other animals) by hindering the evaporation of perspiration from the skin. For example, according to the heat index, a relative humidity of 75% at air temperature of 80.0 °F (26.7 °C) would feel like 83.6 ± 1.3 °F (28.7 ± 0.7 °C). [13] [14]
The heat index (HI) is an index that combines air temperature and relative humidity, in shaded areas, to posit a human-perceived equivalent temperature, as how hot it would feel if the humidity were some other value in the shade. For example, when the temperature is 32 °C (90 °F) with 70% relative humidity, the heat index is 41 °C (106 °F ...
The wet-bulb temperature is the lowest temperature that may be achieved by evaporative cooling of a water-wetted, ventilated surface.. By contrast, the dew point is the temperature to which the ambient air must be cooled to reach 100% relative humidity assuming there is no further evaporation into the air; it is the temperature where condensation (dew) and clouds would form.
The wet-bulb globe temperature (WBGT) is a measure of environmental heat as it affects humans. Unlike a simple temperature measurement, WBGT accounts for all four major environmental heat factors: air temperature, humidity, radiant heat (from sunlight or sources such as furnaces), and air movement (wind or ventilation). [ 1 ]
Alternatively, the cloud base can be estimated from surface measurements of air temperature and humidity by calculating the lifted condensation level. One method for doing this, used by the U.S. Federal Aviation Administration and often named after Tom Bradbury, [1] is as follows: Find the difference between the surface temperature and the dew ...
Δ = Rate of change of saturation specific humidity with air temperature. (Pa K −1) R n = Net irradiance (MJ m −2 day −1), the external source of energy flux G = Ground heat flux (MJ m −2 day −1), usually equivalent to zero on a day T = Air temperature at 2m (K) u 2 = Wind speed at 2m height (m/s) δe = vapor pressure deficit (kPa)