Search results
Results From The WOW.Com Content Network
For-loops are typically used when the number of iterations is known before entering the loop. ... //Using for-loops to add numbers 1 - 5 int sum = 0; for (int i = 1 ...
In mathematics, summation is the addition of a sequence of numbers, called addends or summands; the result is their sum or total.Beside numbers, other types of values can be summed as well: functions, vectors, matrices, polynomials and, in general, elements of any type of mathematical objects on which an operation denoted "+" is defined.
A running total or rolling total is the summation of a sequence of numbers which is updated each time a new number is added to the sequence, by adding the value of the new number to the previous running total. Another term for it is partial sum. The purposes of a running total are twofold.
Here input is the input array to be sorted, key returns the numeric key of each item in the input array, count is an auxiliary array used first to store the numbers of items with each key, and then (after the second loop) to store the positions where items with each key should be placed, k is the maximum value of the non-negative key values and ...
The period of the sequence, or order of the set of sociable numbers, is the number of numbers in this cycle. If the period of the sequence is 1, the number is a sociable number of order 1, or a perfect number—for example, the proper divisors of 6 are 1, 2, and 3, whose sum is again 6. A pair of amicable numbers is a set of sociable numbers of ...
In mathematics, the amicable numbers are two different natural numbers related in such a way that the sum of the proper divisors of each is equal to the other number. That is, s ( a )= b and s ( b )= a , where s ( n )=σ( n )- n is equal to the sum of positive divisors of n except n itself (see also divisor function ).
Pairwise summation is the default summation algorithm in NumPy [9] and the Julia technical-computing language, [10] where in both cases it was found to have comparable speed to naive summation (thanks to the use of a large base case).
It is used to prove Kronecker's lemma, which in turn, is used to prove a version of the strong law of large numbers under variance constraints. It may be used to prove Nicomachus's theorem that the sum of the first cubes equals the square of the sum of the first positive integers. [2]