Search results
Results From The WOW.Com Content Network
For example, a Mercator map printed in a book might have an equatorial width of 13.4 cm corresponding to a globe radius of 2.13 cm and an RF of approximately 1 / 300M (M is used as an abbreviation for 1,000,000 in writing an RF) whereas Mercator's original 1569 map has a width of 198 cm corresponding to a globe radius of 31.5 cm and an ...
Gott, Goldberg and Vanderbei’s double-sided disk map was designed to minimize all six types of map distortions. Not properly "a" map projection because it is on two surfaces instead of one, it consists of two hemispheric equidistant azimuthal projections back-to-back. [5] [6] [7] 1879 Peirce quincuncial: Other Conformal Charles Sanders Peirce
LuciadLightspeed consists of over 100 different software components and connectors to fuse, visualize and analyze geospatial data. This can include static and moving data, maps, satellite imagery, crowd-sourced data, full motion video, weather data and terrain elevation in many different geodetic references and map projections.
Because maps have many different purposes, a diversity of projections have been created to suit those purposes. Another consideration in the configuration of a projection is its compatibility with data sets to be used on the map. Data sets are geographic information; their collection depends on the chosen datum (model) of the Earth
Web Mercator is a slight variant of the Mercator projection, one used primarily in Web-based mapping programs. It uses the same formulas as the standard Mercator as used for small-scale maps. However, the Web Mercator uses the spherical formulas at all scales whereas large-scale Mercator maps normally use the ellipsoidal form of the projection.
The projection represents the poles as points, as they are on the sphere, but the meridians and continents are distorted. The equator and the central meridian are the most accurate parts of the map, having no distortion at all, and the further away from those that one examines, the greater the distortion. [2] The projection is defined by:
The Behrmann projection with Tissot's indicatrices The Mercator projection with Tissot's indicatrices. In cartography, a Tissot's indicatrix (Tissot indicatrix, Tissot's ellipse, Tissot ellipse, ellipse of distortion) (plural: "Tissot's indicatrices") is a mathematical contrivance presented by French mathematician Nicolas Auguste Tissot in 1859 and 1871 in order to characterize local ...
oblique Mercator projection. The oblique Mercator map projection is an adaptation of the standard Mercator projection. The oblique version is sometimes used in national mapping systems. When paired with a suitable geodetic datum, the oblique Mercator delivers high accuracy in zones less than a few degrees in arbitrary directional extent.