When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Discrete optimization - Wikipedia

    en.wikipedia.org/wiki/Discrete_optimization

    Discrete optimization is a branch of optimization in applied mathematics and computer science. As opposed to continuous optimization , some or all of the variables used in a discrete optimization problem are restricted to be discrete variables —that is, to assume only a discrete set of values, such as the integers .

  3. Particle swarm optimization - Wikipedia

    en.wikipedia.org/wiki/Particle_swarm_optimization

    There are several schools of thought as to why and how the PSO algorithm can perform optimization. A common belief amongst researchers is that the swarm behaviour varies between exploratory behaviour, that is, searching a broader region of the search-space, and exploitative behaviour, that is, a locally oriented search so as to get closer to a ...

  4. Iterated local search - Wikipedia

    en.wikipedia.org/wiki/Iterated_local_search

    Iterated Local Search [1] [2] (ILS) is a term in applied mathematics and computer science defining a modification of local search or hill climbing methods for solving discrete optimization problems. Local search methods can get stuck in a local minimum, where no improving neighbors are available.

  5. Combinatorial optimization - Wikipedia

    en.wikipedia.org/wiki/Combinatorial_optimization

    A minimum spanning tree of a weighted planar graph.Finding a minimum spanning tree is a common problem involving combinatorial optimization. Combinatorial optimization is a subfield of mathematical optimization that consists of finding an optimal object from a finite set of objects, [1] where the set of feasible solutions is discrete or can be reduced to a discrete set.

  6. List of IEEE publications - Wikipedia

    en.wikipedia.org/wiki/List_of_IEEE_publications

    The publications of the Institute of Electrical and Electronics Engineers (IEEE) constitute around 30% of the world literature in the electrical and electronics engineering and computer science fields, [citation needed] publishing well over 100 peer-reviewed journals. [1]

  7. Genetic algorithm - Wikipedia

    en.wikipedia.org/wiki/Genetic_algorithm

    Reactive search optimization (RSO) advocates the integration of sub-symbolic machine learning techniques into search heuristics for solving complex optimization problems. The word reactive hints at a ready response to events during the search through an internal online feedback loop for the self-tuning of critical parameters.

  8. Levenberg–Marquardt algorithm - Wikipedia

    en.wikipedia.org/wiki/Levenberg–Marquardt...

    The LMA is used in many software applications for solving generic curve-fitting problems. By using the Gauss–Newton algorithm it often converges faster than first-order methods. [6] However, like other iterative optimization algorithms, the LMA finds only a local minimum, which is not necessarily the global minimum.

  9. Stochastic gradient descent - Wikipedia

    en.wikipedia.org/wiki/Stochastic_gradient_descent

    In 1997, the practical performance benefits from vectorization achievable with such small batches were first explored, [13] paving the way for efficient optimization in machine learning. As of 2023, this mini-batch approach remains the norm for training neural networks, balancing the benefits of stochastic gradient descent with gradient descent .