Ad
related to: physics fluctuation diffusion and respiration experiment pptstudy.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
The fluctuation–dissipation theorem is a general result of statistical thermodynamics that quantifies the relation between the fluctuations in a system that obeys detailed balance and the response of the system to applied perturbations.
Fick's first law relates the diffusive flux to the gradient of the concentration. It postulates that the flux goes from regions of high concentration to regions of low concentration, with a magnitude that is proportional to the concentration gradient (spatial derivative), or in simplistic terms the concept that a solute will move from a region of high concentration to a region of low ...
Another method to describe the motion of a Brownian particle was described by Langevin, now known for its namesake as the Langevin equation.) (,) = (,), given the initial condition (, =) = (); where () is the position of the particle at some given time, is the tagged particle's initial position, and is the diffusion constant with the S.I. units ...
D is the diffusion coefficient; μ is the "mobility", or the ratio of the particle's terminal drift velocity to an applied force, μ = v d /F; k B is the Boltzmann constant; T is the absolute temperature. This equation is an early example of a fluctuation-dissipation relation. [7]
In this theoretical framework, diffusion is due to fluctuations whose dimensions range from the molecular scale to the macroscopic scale. [3] Chemical diffusion increases the entropy of a system, i.e. diffusion is a spontaneous and irreversible process. Particles can spread out by diffusion, but will not spontaneously re-order themselves ...
The concept of diffusion is widely used in many fields, including physics (particle diffusion), chemistry, biology, sociology, economics, statistics, data science, and finance (diffusion of people, ideas, data and price values). The central idea of diffusion, however, is common to all of these: a substance or collection undergoing diffusion ...
This observation is useful in defining Brownian motion on an m-dimensional Riemannian manifold (M, g): a Brownian motion on M is defined to be a diffusion on M whose characteristic operator in local coordinates x i, 1 ≤ i ≤ m, is given by 1 / 2 Δ LB, where Δ LB is the Laplace–Beltrami operator given in local coordinates by ...
The Maxwell–Stefan diffusion (or Stefan–Maxwell diffusion) is a model for describing diffusion in multicomponent systems. The equations that describe these transport processes have been developed independently and in parallel by James Clerk Maxwell [ 1 ] for dilute gases and Josef Stefan [ 2 ] for liquids.