When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Lattice-based cryptography - Wikipedia

    en.wikipedia.org/wiki/Lattice-based_cryptography

    Lattice-based constructions support important standards of post-quantum cryptography. [1] Unlike more widely used and known public-key schemes such as the RSA , Diffie-Hellman or elliptic-curve cryptosystems — which could, theoretically, be defeated using Shor's algorithm on a quantum computer — some lattice-based constructions appear to be ...

  3. IEEE P1363 - Wikipedia

    en.wikipedia.org/wiki/IEEE_P1363

    IEEE P1363 is an Institute of Electrical and Electronics Engineers (IEEE) standardization project for public-key cryptography. It includes specifications for: Traditional public-key cryptography (IEEE Std 1363-2000 and 1363a-2004) Lattice-based public-key cryptography (IEEE Std 1363.1-2008) Password-based public-key cryptography (IEEE Std 1363. ...

  4. Lattice problem - Wikipedia

    en.wikipedia.org/wiki/Lattice_problem

    In computer science, lattice problems are a class of optimization problems related to mathematical objects called lattices.The conjectured intractability of such problems is central to the construction of secure lattice-based cryptosystems: lattice problems are an example of NP-hard problems which have been shown to be average-case hard, providing a test case for the security of cryptographic ...

  5. Lenstra–Lenstra–Lovász lattice basis reduction algorithm

    en.wikipedia.org/wiki/Lenstra–Lenstra–Lovász...

    An early successful application of the LLL algorithm was its use by Andrew Odlyzko and Herman te Riele in disproving Mertens conjecture. [5]The LLL algorithm has found numerous other applications in MIMO detection algorithms [6] and cryptanalysis of public-key encryption schemes: knapsack cryptosystems, RSA with particular settings, NTRUEncrypt, and so forth.

  6. Short integer solution problem - Wikipedia

    en.wikipedia.org/wiki/Short_integer_solution_problem

    The Short Integer Solution (SIS) problem is an average case problem that is used in lattice-based cryptography constructions. Lattice-based cryptography began in 1996 from a seminal work by Ajtai [ 1 ] who presented a family of one-way functions based on the SIS problem.

  7. Zero-knowledge proof - Wikipedia

    en.wikipedia.org/wiki/Zero-knowledge_proof

    In cryptography, a zero-knowledge proof is a protocol in which one party (the prover) can convince another party (the verifier) that some given statement is true, without conveying to the verifier any information beyond the mere fact of that statement's truth. [1]

  8. GGH encryption scheme - Wikipedia

    en.wikipedia.org/wiki/GGH_encryption_scheme

    The Goldreich–Goldwasser–Halevi (GGH) lattice-based cryptosystem is a broken asymmetric cryptosystem based on lattices. There is also a GGH signature scheme which hasn't been broken as of 2024. The Goldreich–Goldwasser–Halevi (GGH) cryptosystem makes use of the fact that the closest vector problem can be a hard problem.

  9. BLISS signature scheme - Wikipedia

    en.wikipedia.org/wiki/BLISS_signature_scheme

    BLISS (short for Bimodal Lattice Signature Scheme) is a digital signature scheme proposed by Léo Ducas, Alain Durmus, Tancrède Lepoint and Vadim Lyubashevsky in their 2013 paper "Lattice Signature and Bimodal Gaussians".