Ad
related to: hamiltonian circuit in graph theory
Search results
Results From The WOW.Com Content Network
A graph that contains a Hamiltonian path is called a traceable graph. A graph is Hamiltonian-connected if for every pair of vertices there is a Hamiltonian path between the two vertices. A Hamiltonian cycle, Hamiltonian circuit, vertex tour or graph cycle is a cycle that visits each vertex exactly once.
The Hamiltonian path problem is a topic discussed in the fields of complexity theory and graph theory. It decides if a directed or undirected graph , G , contains a Hamiltonian path , a path that visits every vertex in the graph exactly once.
Ore's theorem is a result in graph theory proved in 1960 by Norwegian mathematician Øystein Ore. It gives a sufficient condition for a graph to be Hamiltonian, essentially stating that a graph with sufficiently many edges must contain a Hamilton cycle.
(Hamilton originally thought in terms of moves between the faces of an icosahedron, which is equivalent by duality. This is the origin of the name "icosian". [3]) Hamilton's work in this area resulted indirectly in the terms Hamiltonian circuit and Hamiltonian path in graph theory. [4]
Puzzles like Hamilton's icosian game, based on finding Hamiltonian cycles in planar graphs, continue to be sold as smartphone apps. [19] Maker-Breaker games based on Hamiltonian cycles were introduced to combinatorial game theory in a 1978 paper by Václav Chvátal and Paul ErdÅ‘s , [ 20 ] [ 21 ] and continue to be studied in mathematics.
In graph theory, the Lovász conjecture (1969) is a classical problem on Hamiltonian paths in graphs. It says: Every finite connected vertex-transitive graph contains a Hamiltonian path. Originally László Lovász stated the problem in the opposite way, but this version became standard.
The "compulsory" edges of the fragments, that must be part of any Hamiltonian path through the fragment, are connected at the central vertex; because any cycle can use only two of these three edges, there can be no Hamiltonian cycle. The resulting Tutte graph is 3-connected and planar, so by Steinitz' theorem it is the graph of a polyhedron. In ...
The 7 cycles of the wheel graph W 4. For odd values of n, W n is a perfect graph with chromatic number 3: the vertices of the cycle can be given two colors, and the center vertex given a third color. For even n, W n has chromatic number 4, and (when n ≥ 6) is not perfect. W 7 is the only wheel graph that is a unit distance graph in the ...