When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Dirichlet's theorem on arithmetic progressions - Wikipedia

    en.wikipedia.org/wiki/Dirichlet's_theorem_on...

    Although the proof of Dirichlet's Theorem makes use of calculus and analytic number theory, some proofs of examples are much more straightforward. In particular, the proof of the example of infinitely many primes of the form 4 n + 3 {\displaystyle 4n+3} makes an argument similar to the one made in the proof of Euclid's theorem (Silverman 2013).

  3. Vorlesungen über Zahlentheorie - Wikipedia

    en.wikipedia.org/wiki/Vorlesungen_über...

    The Vorlesungen contains two key results in number theory which were first proved by Dirichlet. The first of these is the class number formulae for binary quadratic forms. The second is a proof that arithmetic progressions contains an infinite number of primes (known as Dirichlet's theorem); this proof introduces Dirichlet L-series. These ...

  4. Analytic number theory - Wikipedia

    en.wikipedia.org/wiki/Analytic_number_theory

    In mathematics, analytic number theory is a branch of number theory that uses methods from mathematical analysis to solve problems about the integers. [1] It is often said to have begun with Peter Gustav Lejeune Dirichlet 's 1837 introduction of Dirichlet L -functions to give the first proof of Dirichlet's theorem on arithmetic progressions .

  5. Number theory - Wikipedia

    en.wikipedia.org/wiki/Number_theory

    One may ask analytic questions about algebraic numbers, and use analytic means to answer such questions; it is thus that algebraic and analytic number theory intersect. For example, one may define prime ideals (generalizations of prime numbers in the field of algebraic numbers) and ask how many prime ideals there are up to a certain size.

  6. Dirichlet's unit theorem - Wikipedia

    en.wikipedia.org/wiki/Dirichlet's_unit_theorem

    In mathematics, Dirichlet's unit theorem is a basic result in algebraic number theory due to Peter Gustav Lejeune Dirichlet. [1] It determines the rank of the group of units in the ring O K of algebraic integers of a number field K. The regulator is a positive real number that determines how "dense" the units are.

  7. List of number theory topics - Wikipedia

    en.wikipedia.org/wiki/List_of_number_theory_topics

    Von Staudt–Clausen theorem; Dirichlet series; Euler product; Prime number theorem. Prime-counting function. Meissel–Lehmer algorithm; Offset logarithmic integral; Legendre's constant; Skewes' number; Bertrand's postulate. Proof of Bertrand's postulate; Proof that the sum of the reciprocals of the primes diverges; Cramér's conjecture ...

  8. Dirichlet's theorem - Wikipedia

    en.wikipedia.org/wiki/Dirichlet's_theorem

    Dirichlet's theorem may refer to any of several mathematical theorems due to Peter Gustav Lejeune Dirichlet. Dirichlet's theorem on arithmetic progressions; Dirichlet's approximation theorem; Dirichlet's unit theorem; Dirichlet conditions; Dirichlet boundary condition; Dirichlet's principle; Pigeonhole principle, sometimes also called Dirichlet ...

  9. Dirichlet character - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_character

    In analytic number theory and related branches of mathematics, a complex-valued arithmetic function: is a Dirichlet character of modulus (where is a positive integer) if for all integers and : [1] χ ( a b ) = χ ( a ) χ ( b ) ; {\displaystyle \chi (ab)=\chi (a)\chi (b);} that is, χ {\displaystyle \chi } is completely multiplicative .