When.com Web Search

  1. Ad

    related to: dirichlet's theorem number theory examples answer questions pdf full

Search results

  1. Results From The WOW.Com Content Network
  2. Dirichlet's theorem on arithmetic progressions - Wikipedia

    en.wikipedia.org/wiki/Dirichlet's_theorem_on...

    In number theory, Dirichlet's theorem, also called the Dirichlet prime number theorem, states that for any two positive coprime integers a and d, there are infinitely many primes of the form a + nd, where n is also a positive integer. In other words, there are infinitely many primes that are congruent to a modulo d.

  3. Vorlesungen über Zahlentheorie - Wikipedia

    en.wikipedia.org/wiki/Vorlesungen_über...

    The Vorlesungen contains two key results in number theory which were first proved by Dirichlet. The first of these is the class number formulae for binary quadratic forms. The second is a proof that arithmetic progressions contains an infinite number of primes (known as Dirichlet's theorem); this proof introduces Dirichlet L-series. These ...

  4. Analytic number theory - Wikipedia

    en.wikipedia.org/wiki/Analytic_number_theory

    In mathematics, analytic number theory is a branch of number theory that uses methods from mathematical analysis to solve problems about the integers. [1] It is often said to have begun with Peter Gustav Lejeune Dirichlet 's 1837 introduction of Dirichlet L -functions to give the first proof of Dirichlet's theorem on arithmetic progressions .

  5. Dirichlet's unit theorem - Wikipedia

    en.wikipedia.org/wiki/Dirichlet's_unit_theorem

    In mathematics, Dirichlet's unit theorem is a basic result in algebraic number theory due to Peter Gustav Lejeune Dirichlet. [1] It determines the rank of the group of units in the ring O K of algebraic integers of a number field K. The regulator is a positive real number that determines how "dense" the units are.

  6. Algebraic number theory - Wikipedia

    en.wikipedia.org/wiki/Algebraic_number_theory

    Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic objects such as algebraic number fields and their rings of integers , finite fields , and function fields .

  7. Dirichlet's theorem - Wikipedia

    en.wikipedia.org/wiki/Dirichlet's_theorem

    Dirichlet's theorem may refer to any of several mathematical theorems due to Peter Gustav Lejeune Dirichlet. Dirichlet's theorem on arithmetic progressions; Dirichlet's approximation theorem; Dirichlet's unit theorem; Dirichlet conditions; Dirichlet boundary condition; Dirichlet's principle; Pigeonhole principle, sometimes also called Dirichlet ...

  8. List of number theory topics - Wikipedia

    en.wikipedia.org/wiki/List_of_number_theory_topics

    Von Staudt–Clausen theorem; Dirichlet series; Euler product; Prime number theorem. Prime-counting function. Meissel–Lehmer algorithm; Offset logarithmic integral; Legendre's constant; Skewes' number; Bertrand's postulate. Proof of Bertrand's postulate; Proof that the sum of the reciprocals of the primes diverges; Cramér's conjecture ...

  9. Peter Gustav Lejeune Dirichlet - Wikipedia

    en.wikipedia.org/wiki/Peter_Gustav_Lejeune_Dirichlet

    Based on his research of the structure of the unit group of quadratic fields, he proved the Dirichlet unit theorem, a fundamental result in algebraic number theory. [15] He first used the pigeonhole principle, a basic counting argument, in the proof of a theorem in diophantine approximation, later named after him Dirichlet's approximation theorem.