When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Word embedding - Wikipedia

    en.wikipedia.org/wiki/Word_embedding

    In natural language processing, a word embedding is a representation of a word. The embedding is used in text analysis.Typically, the representation is a real-valued vector that encodes the meaning of the word in such a way that the words that are closer in the vector space are expected to be similar in meaning. [1]

  3. Latent space - Wikipedia

    en.wikipedia.org/wiki/Latent_space

    These models learn the embeddings by leveraging statistical techniques and machine learning algorithms. Here are some commonly used embedding models: Word2Vec: [4] Word2Vec is a popular embedding model used in natural language processing (NLP). It learns word embeddings by training a neural network on a large corpus of text.

  4. Natural language processing - Wikipedia

    en.wikipedia.org/wiki/Natural_language_processing

    Natural language processing (NLP) is a subfield of computer science and especially artificial intelligence.It is primarily concerned with providing computers with the ability to process data encoded in natural language and is thus closely related to information retrieval, knowledge representation and computational linguistics, a subfield of linguistics.

  5. Word2vec - Wikipedia

    en.wikipedia.org/wiki/Word2vec

    The word with embeddings most similar to the topic vector might be assigned as the topic's title, whereas far away word embeddings may be considered unrelated. As opposed to other topic models such as LDA , top2vec provides canonical ‘distance’ metrics between two topics, or between a topic and another embeddings (word, document, or otherwise).

  6. ELMo - Wikipedia

    en.wikipedia.org/wiki/ELMo

    ELMo (embeddings from language model) is a word embedding method for representing a sequence of words as a corresponding sequence of vectors. [1] It was created by researchers at the Allen Institute for Artificial Intelligence , [ 2 ] and University of Washington and first released in February, 2018.

  7. How to pronounce fashion's most difficult words - AOL

    www.aol.com/lifestyle/2014-09-02-how-to...

    By NADIA SIKANDER The fashion industry is chock full of designers with difficult names to pronounce and even more mysterious patterns and fabrics for the average shopper. With Mercedez-Benz's ...

  8. Feature learning - Wikipedia

    en.wikipedia.org/wiki/Feature_learning

    Other self-supervised techniques extend word embeddings by finding representations for larger text structures such as sentences or paragraphs in the input data. [9] Doc2vec extends the generative training approach in word2vec by adding an additional input to the word prediction task based on the paragraph it is within, and is therefore intended ...

  9. Main page; Contents; Current events; Random article; About Wikipedia; Contact us