Search results
Results From The WOW.Com Content Network
According to the American Lung Association, the Denver–Aurora area is the 14th most ozone-polluted area in the U.S. [65] The problem of high ozone levels is not new to this area. In 2004, the EPA allotted the Denver Metro /North Front Range [ b ] as non-attainment areas per 1997's 8-hour ozone standard, [ 66 ] but later deferred this status ...
Ozone cycle illustrated over image by NASA astronaut Scott Kelly. Ozone is a ubiquitous yet highly reactive molecule in the atmosphere. Such a highly reactive oxidizer would normally be dangerous to life but ozone's concentration at sea level is usually not high enough to be toxic.
UV-A does not primarily cause skin reddening, but there is evidence that it causes long-term skin damage. Although the concentration of the ozone in the ozone layer is very small, it is vitally important to life because it absorbs biologically harmful ultraviolet (UV) radiation coming from the Sun. Extremely short or vacuum UV (10–100 nm) is ...
Water is ~11% hydrogen by mass but ~67% hydrogen by atomic percent, and these numbers along with the complementary % numbers for oxygen in water, are the largest contributors to overall mass and atomic composition figures. Because of water content, the human body contains more oxygen by mass than any other element, but more hydrogen by atom ...
This process is in contrast to passive transport, which allows molecules or ions to move down their concentration gradient, from an area of high concentration to an area of low concentration, with energy. Active transport is essential for various physiological processes, such as nutrient uptake, hormone secretion, and nig impulse transmission.
Homonuclear triatomic molecules contain three of the same kind of atom. That molecule will be an allotrope of that element. Ozone, O 3 is an example of a triatomic molecule with all atoms the same. Triatomic hydrogen, H 3, is unstable and breaks up spontaneously. H 3 +, the trihydrogen cation is stable by itself and is symmetric.
The reverse reaction, the addition of singlet oxygen to water, typically does not occur in part due to the scarcity of singlet oxygen. In biological systems, however, ozone is known to be generated from singlet oxygen, and the presumed mechanism is an antibody-catalyzed production of trioxidane from singlet oxygen.
Its bulk properties partly result from the interaction of its component atoms, oxygen and hydrogen, with atoms of nearby water molecules. Hydrogen atoms are covalently bonded to oxygen in a water molecule but also have an additional attraction (about 23.3 kJ·mol −1 per hydrogen atom) to an adjacent oxygen atom in a separate molecule. [2]