Ads
related to: cube numbers up to 10 worksheet answers
Search results
Results From The WOW.Com Content Network
Cube (algebra) y = x3 for values of 1 ≤ x ≤ 25. In arithmetic and algebra, the cube of a number n is its third power, that is, the result of multiplying three instances of n together. The cube of a number or any other mathematical expression is denoted by a superscript 3, for example 23 = 8 or (x + 1)3. The cube is also the number ...
In the mathematics of sums of powers, it is an open problem to characterize the numbers that can be expressed as a sum of three cubes of integers, allowing both positive and negative cubes in the sum. A necessary condition for an integer to equal such a sum is that cannot equal 4 or 5 modulo 9, because the cubes modulo 9 are 0, 1, and −1, and ...
Figurate numbers were a concern of the Pythagorean worldview. It was well understood that some numbers could have many figurations, e.g. 36 is a both a square and a triangle and also various rectangles. The modern study of figurate numbers goes back to Pierre de Fermat, specifically the Fermat polygonal number theorem.
A Cabtaxi number is the smallest positive number that can be expressed as a sum of two integer cubes in n ways, allowing the cubes to be negative or zero as well as positive. The smallest cabtaxi number after Cabtaxi (1) = 0, is Cabtaxi (2) = 91, [5] expressed as: Cabtaxi (3), the smallest Cabtaxi number expressed in 3 different ways, is 4104 ...
Mathematics is a field of study that discovers and organizes methods, theories and theorems that are developed and proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study ...
The sequence of squared triangular numbers is [1] 0, 1, 9, 36, 100, 225, 441, 784, 1296, 2025, 3025, 4356, 6084, 8281, ... . These numbers can be viewed as figurate numbers, a four-dimensional hyperpyramidal generalization of the triangular numbers and square pyramidal numbers. As Stein (1971) observes, these numbers also count the number of ...