Ads
related to: factoring trinomials into two binomials video questions and practicestudy.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
First stated in. 1929; 95 years ago (1929) In elementary algebra, FOIL is a mnemonic for the standard method of multiplying two binomials [1] —hence the method may be referred to as the FOIL method. The word FOIL is an acronym for the four terms of the product: F irst ("first" terms of each binomial are multiplied together) O uter ("outside ...
Factorization of polynomials. In mathematics and computer algebra, factorization of polynomials or polynomial factorization expresses a polynomial with coefficients in a given field or in the integers as the product of irreducible factors with coefficients in the same domain. Polynomial factorization is one of the fundamental components of ...
In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind. For example, 3 × 5 is an integer factorization of 15, and (x – 2) (x + 2) is a polynomial ...
Trinomial expansion. In mathematics, a trinomial expansion is the expansion of a power of a sum of three terms into monomials. The expansion is given by. where n is a nonnegative integer and the sum is taken over all combinations of nonnegative indices i, j, and k such that i + j + k = n. [1] The trinomial coefficients are given by.
Every positive integer greater than 1 is either the product of two or more integer factors greater than 1, in which case it is called a composite number, or it is not, in which case it is called a prime number. For example, 15 is a composite number because 15 = 3 · 5, but 7 is a prime number because it cannot be decomposed in this way.
Ruffini's rule can be used when one needs the quotient of a polynomial P by a binomial of the form . (When one needs only the remainder, the polynomial remainder theorem provides a simpler method.) A typical example, where one needs the quotient, is the factorization of a polynomial p ( x ) {\displaystyle p(x)} for which one knows a root r :
The difference of two squares is used to find the linear factors of the sum of two squares, using complex number coefficients. For example, the complex roots of can be found using difference of two squares: (since ) Therefore, the linear factors are and . Since the two factors found by this method are complex conjugates, we can use this in ...
Square-free factorization. The algorithm determines a square-free factorization for polynomials whose coefficients come from the finite field Fq of order q = pm with p a prime. This algorithm firstly determines the derivative and then computes the gcd of the polynomial and its derivative. If it is not one then the gcd is again divided into the ...