Search results
Results From The WOW.Com Content Network
A graph with 6 vertices and 7 edges where the vertex number 6 on the far-left is a leaf vertex or a pendant vertex. In discrete mathematics, and more specifically in graph theory, a vertex (plural vertices) or node is the fundamental unit of which graphs are formed: an undirected graph consists of a set of vertices and a set of edges (unordered pairs of vertices), while a directed graph ...
Bipartite distance-hereditary graphs can be built up from a single vertex by adding only pendant vertices and false twins, since any true twin would form a triangle, but the pendant vertex and false twin operations preserve bipartiteness. Every bipartite distance-hereditary graph is chordal bipartite and modular. [11]
A vertex with degree 1 is called a leaf vertex or end vertex or a pendant vertex, and the edge incident with that vertex is called a pendant edge. In the graph on the right, {3,5} is a pendant edge. This terminology is common in the study of trees in graph theory and especially trees as data structures .
1. A leaf vertex or pendant vertex (especially in a tree) is a vertex whose degree is 1. A leaf edge or pendant edge is the edge connecting a leaf vertex to its single neighbour. 2. A leaf power of a tree is a graph whose vertices are the leaves of the tree and whose edges connect leaves whose distance in the tree is at most a given threshold.
A graph with three vertices and three edges. A graph (sometimes called an undirected graph to distinguish it from a directed graph, or a simple graph to distinguish it from a multigraph) [4] [5] is a pair G = (V, E), where V is a set whose elements are called vertices (singular: vertex), and E is a set of unordered pairs {,} of vertices, whose elements are called edges (sometimes links or lines).
An example of an undirected hypergraph, ... V7 is an isolated vertex. Vertices are aligned to the left. The legend on the right shows the names of the edges.
For instance, in the octahedron graph, shown in the figure, each vertex has a neighbourhood isomorphic to a cycle of four vertices, so the octahedron is locally C 4. For example: Any complete graph K n is locally K n-1. The only graphs that are locally complete are disjoint unions of complete graphs. A Turán graph T(rs,r) is locally T((r-1)s,r ...
Upgrade to a faster, more secure version of a supported browser. It's free and it only takes a few moments: