Search results
Results From The WOW.Com Content Network
Suppose we have a continuous differential equation ′ = (,), =, and we wish to compute an approximation of the true solution () at discrete time steps ,, …,.For simplicity, assume the time steps are equally spaced:
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Special pages; Help; Learn to edit; Community portal; Recent changes; Upload file
(Figure 2) Illustration of numerical integration for the equation ′ =, = Blue is the Euler method; green, the midpoint method; red, the exact solution, =. The step size is =
The following examples are known as accidents caused by numerical errors: Failure of intercepting missiles in the Gulf War (1991) [ 7 ] Failure of the Ariane 5 rocket (1996) [ 8 ]
The term "numerical integration" first appears in 1915 in the publication A Course in Interpolation and Numeric Integration for the Mathematical Laboratory by David Gibb. [2] "Quadrature" is a historical mathematical term that means calculating area. Quadrature problems have served as one of the main sources of mathematical analysis.
For example, consider the ordinary differential equation ′ = + The Euler method for solving this equation uses the finite difference quotient (+) ′ to approximate the differential equation by first substituting it for u'(x) then applying a little algebra (multiplying both sides by h, and then adding u(x) to both sides) to get (+) + (() +).
Composite Simpson's 3/8 rule is even less accurate. Integration by Simpson's 1/3 rule can be represented as a weighted average with 2/3 of the value coming from integration by the trapezoidal rule with step h and 1/3 of the value coming from integration by the rectangle rule with step 2h. The accuracy is governed by the second (2h step) term.
In general, a method with (+) LTE (local truncation error) is said to be of kth order. The region of absolute stability for the backward Euler method is the complement in the complex plane of the disk with radius 1 centered at 1, depicted in the figure. [ 4 ]