Search results
Results From The WOW.Com Content Network
Orbital position vector, orbital velocity vector, other orbital elements. In astrodynamics and celestial dynamics, the orbital state vectors (sometimes state vectors) of an orbit are Cartesian vectors of position and velocity that together with their time () uniquely determine the trajectory of the orbiting body in space.
Earth-centered inertial (ECI) coordinate frames have their origins at the center of mass of Earth and are fixed with respect to the stars. [1] " I" in "ECI" stands for inertial (i.e. "not accelerating "), in contrast to the "Earth-centered – Earth-fixed" ( ECEF ) frames, which remains fixed with respect to Earth's surface in its rotation ...
Keplerian elements parameters can be encoded as text in a number of formats. The most common of them is the NASA / NORAD "two-line elements" (TLE) format, [ 4 ] originally designed for use with 80 column punched cards, but still in use because it is the most common format, and 80-character ASCII records can be handled efficiently by modern ...
The perifocal coordinate system (with unit vectors p, q, w), against the reference coordinate system (with unit vectors I, J, K) The perifocal coordinate (PQW) system is a frame of reference for an orbit.
In celestial mechanics, a Kepler orbit (or Keplerian orbit, named after the German astronomer Johannes Kepler) is the motion of one body relative to another, as an ellipse, parabola, or hyperbola, which forms a two-dimensional orbital plane in three-dimensional space. A Kepler orbit can also form a straight line.
The longitude of the ascending node (bright green) as a part of a diagram of orbital parameters.. The longitude of the ascending node, also known as the right ascension of the ascending node, is one of the orbital elements used to specify the orbit of an object in space.
The specific example discussed is of a satellite orbiting a planet, but the rules of thumb could also apply to other situations, such as orbits of small bodies around a star such as the Sun. Kepler's laws of planetary motion: Orbits are elliptical, with the heavier body at one focus of the ellipse. A special case of this is a circular orbit (a ...
The solutions to this differential equation include the Keplerian motions, as shown, but they also include motions where the orbit is a hyperbola or parabola or a straight line. (See Kepler orbit .) Newton's law of gravitation