Search results
Results From The WOW.Com Content Network
If instead A is a complex square matrix, then there is a decomposition A = QR where Q is a unitary matrix (so the conjugate transpose † =). If A has n linearly independent columns, then the first n columns of Q form an orthonormal basis for the column space of A .
Instead, the QR algorithm works with a complete basis of vectors, using QR decomposition to renormalize (and orthogonalize). For a symmetric matrix A , upon convergence, AQ = QΛ , where Λ is the diagonal matrix of eigenvalues to which A converged, and where Q is a composite of all the orthogonal similarity transforms required to get there.
An RRQR factorization or rank-revealing QR factorization is a matrix decomposition algorithm based on the QR factorization which can be used to determine the rank of a matrix. [1] The singular value decomposition can be used to generate an RRQR, but it is not an efficient method to do so. [2] An RRQR implementation is available in MATLAB. [3]
The QR code system was invented in 1994, at the Denso Wave automotive products company, in Japan. [6] [7] [8] The initial alternating-square design presented by the team of researchers, headed by Masahiro Hara, was influenced by the black counters and the white counters played on a Go board; [9] the pattern of the position detection markers was determined by finding the least-used sequence of ...
For the QR algorithm with a reasonable target precision, this is , whereas for divide-and-conquer it is . The reason for this improvement is that in divide-and-conquer, the Θ ( m 3 ) {\displaystyle \Theta (m^{3})} part of the algorithm (multiplying Q {\displaystyle Q} matrices) is separate from the iteration, whereas in QR, this must occur in ...
The process of converting a narrow table to wide table is generally referred to as "pivoting" in the context of data transformations. The "pandas" python package provides a "pivot" method which provides for a narrow to wide transformation.
The first paragraph states that QR decomposition has a lower condition number than direct matrix inverse. However, "condition number" is a property of the problem (solving a linear system) and not of the method. So AFAIK, this sentence has no sense. Somebody knows what is the actual reason why QR decomposition is more "numerically stable"?
In Learning the parts of objects by non-negative matrix factorization Lee and Seung [43] proposed NMF mainly for parts-based decomposition of images. It compares NMF to vector quantization and principal component analysis , and shows that although the three techniques may be written as factorizations, they implement different constraints and ...