Search results
Results From The WOW.Com Content Network
Logical equivalence is different from material equivalence. Formulas p {\displaystyle p} and q {\displaystyle q} are logically equivalent if and only if the statement of their material equivalence ( p ↔ q {\displaystyle p\leftrightarrow q} ) is a tautology.
The corresponding logical symbols are "", "", [6] and , [10] and sometimes "iff".These are usually treated as equivalent. However, some texts of mathematical logic (particularly those on first-order logic, rather than propositional logic) make a distinction between these, in which the first, ↔, is used as a symbol in logic formulas, while ⇔ is used in reasoning about those logic formulas ...
Venn diagram of (true part in red) In logic and mathematics, the logical biconditional, also known as material biconditional or equivalence or biimplication or bientailment, is the logical connective used to conjoin two statements and to form the statement "if and only if" (often abbreviated as "iff " [1]), where is known as the antecedent, and the consequent.
In classical logic each propositional formula can be converted to an equivalent formula that is in CNF. [1] This transformation is based on rules about logical equivalences: double negation elimination, De Morgan's laws, and the distributive law.
(As to equivalence, Howson calls it "truth-functional equivalence", while Cunningham calls it "logical equivalence".) Equivalence is symbolized with ⇔ and is a metalanguage symbol, while a biconditional is symbolized with ↔ and is a logical connective in the object language . Regardless, an equivalence or biconditional is true if, and only ...
In mathematical logic, the rules of passage govern how quantifiers distribute over the basic logical connectives of first-order logic.The rules of passage govern the "passage" (translation) from any formula of first-order logic to the equivalent formula in prenex normal form, and vice versa.
It is equivalent to the logical connective from mathematical logic, also known as the material biconditional. The two-input version implements logical equality, behaving according to the truth table to the right, and hence the gate is sometimes called an "equivalence gate". A high output (1) results if both of the inputs to the gate are the same.
The sign '=' may link two logically equivalent expressions; the result is an equation. By "logically equivalent" is meant that the two expressions have the same simplification. Logical equivalence is an equivalence relation over the set of primary algebra formulas, governed by