Search results
Results From The WOW.Com Content Network
The elimination rate constant K or K e is a value used in pharmacokinetics to describe the rate at which a drug is removed from the human system. [1] It is often abbreviated K or K e. It is equivalent to the fraction of a substance that is removed per unit time measured at any particular instant and has units of T −1.
Clearance of a substance is sometimes expressed as the inverse of the time constant that describes its removal rate from the body divided by its volume of distribution (or total body water). In steady-state, it is defined as the mass generation rate of a substance (which equals the mass removal rate) divided by its concentration in the blood.
The most important inference derived from the steady state equation and the equation for fractional change over time is that the elimination rate constant (k e) or the sum of rate constants that apply in a model determine the time course for change in mass when a system is perturbed (either by changing the rate of inflow or production, or by ...
Elimination rate constant: The rate at which a drug is removed from the body. ... The systemically available fraction of a drug. Unitless 0.8 ...
The rate constant kel represents clearance by the kidneys, MPS, and any other non-tumor elimination processes, such that when kb = 0, k10 = kepr + kel where kel is the elimination rate constant. (C) Standard two compartment model with central and peripheral compartments. c1 and c2 represent the drug concentration in blood (central compartment ...
Fraction remaining Percentage ... and depends solely on the reaction rate constant ... rate constant is a fixed number, the elimination of a substance from a living ...
The other elimination pathways are less important in the elimination of drugs, except in very specific cases, such as the respiratory tract for alcohol or anaesthetic gases. The case of mother's milk is of special importance. The liver and kidneys of newly born infants are relatively undeveloped and they are highly sensitive to a drug's toxic ...
where k is the reaction rate constant. Such a decay rate arises from a first-order reaction where the rate of elimination is proportional to the amount of the substance: [ 39 ] d C d t = − k C . {\displaystyle {\frac {dC}{dt}}=-kC.}