Ad
related to: why do we need ml in science activities pdf worksheet answers
Search results
Results From The WOW.Com Content Network
Machine learning (ML) is a subfield of artificial intelligence within computer science that evolved from the study of pattern recognition and computational learning theory. [1] In 1959, Arthur Samuel defined machine learning as a "field of study that gives computers the ability to learn without being explicitly programmed". [ 2 ]
Active learning is a special case of machine learning in which a learning algorithm can interactively query a human user (or some other information source), to label new data points with the desired outputs.
Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that can learn from data and generalize to unseen data, and thus perform tasks without explicit instructions. [1]
In machine learning and pattern recognition, a feature is an individual measurable property or characteristic of a data set. [1] Choosing informative, discriminating, and independent features is crucial to produce effective algorithms for pattern recognition, classification, and regression tasks.
Applications of machine learning (ML) in earth sciences include geological mapping, gas leakage detection and geological feature identification.Machine learning is a subdiscipline of artificial intelligence aimed at developing programs that are able to classify, cluster, identify, and analyze vast and complex data sets without the need for explicit programming to do so. [1]
Meta-learning [1] [2] is a subfield of machine learning where automatic learning algorithms are applied to metadata about machine learning experiments. As of 2017, the term had not found a standard interpretation, however the main goal is to use such metadata to understand how automatic learning can become flexible in solving learning problems, hence to improve the performance of existing ...
Ensemble learning, including both regression and classification tasks, can be explained using a geometric framework. [15] Within this framework, the output of each individual classifier or regressor for the entire dataset can be viewed as a point in a multi-dimensional space.
In machine learning (ML), boosting is an ensemble metaheuristic for primarily reducing bias (as opposed to variance). [1] It can also improve the stability and accuracy of ML classification and regression algorithms. Hence, it is prevalent in supervised learning for converting weak learners to strong learners. [2]