Search results
Results From The WOW.Com Content Network
Toughness as defined by the area under the stress–strain curve for one unit volume of the material. In materials science and metallurgy, toughness is the ability of a material to absorb energy and plastically deform without fracturing. [1] Toughness is the strength with which the material opposes rupture.
Elastic properties describe the reversible deformation (elastic response) of a material to an applied stress.They are a subset of the material properties that provide a quantitative description of the characteristics of a material, like its strength.
Toughness as defined by the area under the stress–strain curve. Materials that are both strong and ductile are classified as tough. Toughness is a material property defined as the area under the stress-strain curve. Toughness can be determined by integrating the stress-strain curve. [3]
The flexural strength is stress at failure in bending. It is equal to or slightly larger than the failure stress in tension. Flexural strength, also known as modulus of rupture, or bend strength, or transverse rupture strength is a material property, defined as the stress in a material just before it yields in a flexure test. [1]
The work associated to phase transformation contributes to the improvement of toughness. In a monolithic Pd–Ag–P–Si–Ge glass alloy, the properties of high bulk modulus and low shear modulus lead to proliferation of shear bands. These bands are self constrained and the toughness is improved. [3]
Young's modulus is defined as the ratio of the stress (force per unit area) applied to the object and the resulting axial strain (displacement or deformation) in the linear elastic region of the material. Although Young's modulus is named after the 19th-century British scientist Thomas Young, the concept was developed in 1727 by Leonhard Euler.
The strength of materials is determined using various methods of calculating the stresses and strains in structural members, such as beams, columns, and shafts. The methods employed to predict the response of a structure under loading and its susceptibility to various failure modes takes into account the properties of the materials such as its yield strength, ultimate strength, Young's modulus ...
Fracture toughness tests are performed to quantify the resistance of a material to failure by cracking. Such tests result in either a single-valued measure of fracture toughness or in a resistance curve. Resistance curves are plots where fracture toughness parameters (K, J etc.) are plotted against parameters characterizing the propagation of ...