Search results
Results From The WOW.Com Content Network
In Matlab/GNU Octave a matrix A can be vectorized by A(:). GNU Octave also allows vectorization and half-vectorization with vec(A) and vech(A) respectively. Julia has the vec(A) function as well. In Python NumPy arrays implement the flatten method, [note 1] while in R the desired effect can be achieved via the c() or as.vector() functions.
The transpose (indicated by T) of any row vector is a column vector, and the transpose of any column vector is a row vector: […] = [] and [] = […]. The set of all row vectors with n entries in a given field (such as the real numbers ) forms an n -dimensional vector space ; similarly, the set of all column vectors with m entries forms an m ...
In linear algebra, the transpose of a matrix is an operator which flips a matrix over its diagonal; that is, it switches the row and column indices of the matrix A by producing another matrix, often denoted by A T (among other notations). [1] The transpose of a matrix was introduced in 1858 by the British mathematician Arthur Cayley. [2]
In mathematics, especially in linear algebra and matrix theory, the commutation matrix is used for transforming the vectorized form of a matrix into the vectorized form of its transpose. Specifically, the commutation matrix K (m,n) is the nm × mn permutation matrix which, for any m × n matrix A, transforms vec(A) into vec(A T): K (m,n) vec(A ...
The conjugate transpose of a matrix with real entries reduces to the transpose of , as the conjugate of a real number is the number itself. The conjugate transpose can be motivated by noting that complex numbers can be usefully represented by 2 × 2 {\displaystyle 2\times 2} real matrices, obeying matrix addition and multiplication: [ 3 ]
MATLAB (an abbreviation of ... and 9. That is, the array starts at 1 ... Transposing a vector or a matrix is done either by the function transpose or by adding dot ...
The vector space of matrices over is denoted by . For A ∈ K m × n {\displaystyle A\in \mathbb {K} ^{m\times n}} , the transpose is denoted A T {\displaystyle A^{\mathsf {T}}} and the Hermitian transpose (also called conjugate transpose ) is denoted A ∗ {\displaystyle A^{*}} .
In [5] are given as examples code of a Matlab functions that creates and matrices for vector of size n = 2, 4, or, 8. Stay open question is it possible to create T r s {\displaystyle Trs} matrices of size, greater than 8.