Search results
Results From The WOW.Com Content Network
In geometry, a point is an abstract idealization of an exact position, without size, in physical space, [1] or its generalization to other kinds of mathematical spaces.As zero-dimensional objects, points are usually taken to be the fundamental indivisible elements comprising the space, of which one-dimensional curves, two-dimensional surfaces, and higher-dimensional objects consist; conversely ...
In mathematics, a zero-dimensional topological space (or nildimensional space) is a topological space that has dimension zero with respect to one of several inequivalent notions of assigning a dimension to a given topological space. [1] A graphical illustration of a zero-dimensional space is a point. [2]
Displacement d (yellow arrow) and moment m (green arrow) of two points x,y on a line (in red). A line L in 3-dimensional Euclidean space is determined by two distinct points that it contains, or by two distinct planes that contain it (a plane-plane intersection).
The plane dual statement of "Two points are on a unique line." is "Two lines meet at a unique point." Forming the plane dual of a statement is known as dualizing the statement. If a statement is true in a projective plane C, then the plane dual of that statement must be true in the dual plane C*.
A subset of P(V) is a projective subspace if and only if, given any two different points, it contains the whole projective line passing through these points. In synthetic geometry , where projective lines are primitive objects, the first property is an axiom, and the second one is the definition of a projective subspace.
In any finite projective space, each line contains the same number of points and the order of the space is defined as one less than this common number. A subspace of the projective space is a subset X, such that any line containing two points of X is a subset of X (that is, completely contained in X). The full space and the empty space are ...
There are two types, points and lines, and one "incidence" relation between points and lines. The three axioms are: G1: Every line contains at least 3 points; G2: Every two distinct points, A and B, lie on a unique line, AB. G3: If lines AB and CD intersect, then so do lines AC and BD (where it is assumed that A and D are distinct from B and C).
The set of geometric primitives is based on the dimension of the region being represented: [1]. Point (0-dimensional), a single location with no height, width, or depth.; Line or curve (1-dimensional), having length but no width, although a linear feature may curve through a higher-dimensional space.