Search results
Results From The WOW.Com Content Network
The number of points (n), chords (c) and regions (r G) for first 6 terms of Moser's circle problem. In geometry, the problem of dividing a circle into areas by means of an inscribed polygon with n sides in such a way as to maximise the number of areas created by the edges and diagonals, sometimes called Moser's circle problem (named after Leo Moser), has a solution by an inductive method.
More formulas of this nature can be given, as explained by Ramanujan's theory of elliptic functions to alternative bases. Perhaps the most notable hypergeometric inversions are the following two examples, involving the Ramanujan tau function τ {\displaystyle \tau } and the Fourier coefficients j {\displaystyle \mathrm {j} } of the J-invariant ...
Original file (812 × 333 pixels, file size: 19 KB, MIME type: application/pdf) This is a file from the Wikimedia Commons . Information from its description page there is shown below.
Bronshtein and Semendyayev is a comprehensive handbook of fundamental working knowledge of mathematics and table of formulas based on the Russian book Справочник по математике для инженеров и учащихся втузов (Spravochnik po matematike dlya inzhenerov i uchashchikhsya vtuzov, literally: "Handbook of mathematics for engineers and students of ...
The circumference of a circle is the distance around it, but if, as in many elementary treatments, distance is defined in terms of straight lines, this cannot be used as a definition. Under these circumstances, the circumference of a circle may be defined as the limit of the perimeters of inscribed regular polygons as the number of sides ...
In geometry, a circular section is a circle on a quadric surface (such as an ellipsoid or hyperboloid). It is a special plane section of the quadric, as this circle is the intersection with the quadric of the plane containing the circle. Any plane section of a sphere is a circular section, if it contains at least 2 points.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
An illustration of the five-point stencil in one and two dimensions (top, and bottom, respectively). In numerical analysis, given a square grid in one or two dimensions, the five-point stencil of a point in the grid is a stencil made up of the point itself together with its four "neighbors".