When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Inner product space - Wikipedia

    en.wikipedia.org/wiki/Inner_product_space

    In mathematics, an inner product space (or, rarely, a Hausdorff pre-Hilbert space [1] [2]) is a real vector space or a complex vector space with an operation called an inner product. The inner product of two vectors in the space is a scalar , often denoted with angle brackets such as in a , b {\displaystyle \langle a,b\rangle } .

  3. Hilbert space - Wikipedia

    en.wikipedia.org/wiki/Hilbert_space

    In the Hilbert space view, this is the orthogonal projection of onto the kernel of the expectation operator, which a continuous linear functional on the Hilbert space (in fact, the inner product with the constant random variable 1), and so this kernel is a closed subspace.

  4. Hilbert C*-module - Wikipedia

    en.wikipedia.org/wiki/Hilbert_C*-module

    Hilbert C*-modules are mathematical objects that generalise the notion of Hilbert spaces (which are themselves generalisations of Euclidean space), in that they endow a linear space with an "inner product" that takes values in a C*-algebra.

  5. Space (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Space_(mathematics)

    Every inner product space is also a normed space. A normed space underlies an inner product space if and only if it satisfies the parallelogram law, or equivalently, if its unit ball is an ellipsoid. Angles between vectors are defined in inner product spaces. A Hilbert space is defined as a complete inner product space. (Some authors insist ...

  6. Unitary operator - Wikipedia

    en.wikipedia.org/wiki/Unitary_operator

    The following, seemingly weaker, definition is also equivalent: Definition 3. A unitary operator is a bounded linear operator U : H → H on a Hilbert space H for which the following hold: the range of U is dense in H, and; U preserves the inner product of the Hilbert space, H. In other words, for all vectors x and y in H we have:

  7. Bra–ket notation - Wikipedia

    en.wikipedia.org/wiki/Bra–ket_notation

    The inner product on Hilbert space ( , ) (with the first argument anti linear as preferred by physicists) is fully equivalent to an (anti-linear) identification between the space of kets and that of bras in the bra ket notation: for a vector ket = | define a functional (i.e. bra) = | by

  8. Gelfand–Naimark–Segal construction - Wikipedia

    en.wikipedia.org/wiki/Gelfand–Naimark–Segal...

    The quotient space of by the vector subspace is an inner product space with the inner product defined by +, + := (),,, which is well-defined due to the Cauchy–Schwarz inequality. The Cauchy completion of A / I {\displaystyle A/I} in the norm induced by this inner product is a Hilbert space, which we denote by H {\displaystyle H} .

  9. Riesz representation theorem - Wikipedia

    en.wikipedia.org/wiki/Riesz_representation_theorem

    This example used the standard inner product, which is the map := ¯, but if a different inner product is used, such as := ¯ where is any Hermitian positive-definite matrix, or if a different orthonormal basis is used then the transformation matrices, and thus also the above formulas, will be different.