Search results
Results From The WOW.Com Content Network
Integration is the basic operation in integral calculus.While differentiation has straightforward rules by which the derivative of a complicated function can be found by differentiating its simpler component functions, integration does not, so tables of known integrals are often useful.
The following is a list of integrals (antiderivative functions) of trigonometric functions.For antiderivatives involving both exponential and trigonometric functions, see List of integrals of exponential functions.
Linearity of integration; Arbitrary constant of integration; Cavalieri's quadrature formula; Fundamental theorem of calculus; Integration by parts; Inverse chain rule method; Integration by substitution. Tangent half-angle substitution; Differentiation under the integral sign; Trigonometric substitution; Partial fractions in integration ...
Download QR code; Print/export ... In all formulas the constant a is assumed to be nonzero, and C denotes the constant of integration.
The resulting integrands are of the same form as the original integrand, so these reduction formulas can be repeatedly applied to drive the exponents m and p toward 0. These reduction formulas can be used for integrands having integer and/or fractional exponents.
For a complete list of integral formulas, see lists of integrals. In all formulas the constant a is assumed to be nonzero, and C denotes the constant of integration. For each inverse hyperbolic integration formula below there is a corresponding formula in the list of integrals of inverse trigonometric functions.
It is assumed that the value of a function f defined on [,] is known at + equally spaced points: < < <.There are two classes of Newton–Cotes quadrature: they are called "closed" when = and =, i.e. they use the function values at the interval endpoints, and "open" when > and <, i.e. they do not use the function values at the endpoints.
The high point of special function theory in 1800–1900 was the theory of elliptic functions; treatises that were essentially complete, such as that of Tannery and Molk, [3] expounded all the basic identities of the theory using techniques from analytic function theory (based on complex analysis).