Search results
Results From The WOW.Com Content Network
Microsoft Excel is a spreadsheet editor developed by Microsoft for Windows, macOS, Android, iOS and iPadOS.It features calculation or computation capabilities, graphing tools, pivot tables, and a macro programming language called Visual Basic for Applications (VBA).
For including parser functions, variables and behavior switches, see Help:Magic words; For a guide to displaying mathematical equations and formulas, see Help:Displaying a formula; For a guide to editing, see Wikipedia:Contributing to Wikipedia; For an overview of commonly used style guidelines, see Wikipedia:Simplified Manual of Style
In linear algebra, the transpose of a matrix is an operator which flips a matrix over its diagonal; that is, it switches the row and column indices of the matrix A by producing another matrix, often denoted by A T (among other notations). [1] The transpose of a matrix was introduced in 1858 by the British mathematician Arthur Cayley. [2]
Julia has the vec(A) function as well. In Python NumPy arrays implement the flatten method, [ note 1 ] while in R the desired effect can be achieved via the c() or as.vector() functions. In R , function vec() of package 'ks' allows vectorization and function vech() implemented in both packages 'ks' and 'sn' allows half-vectorization.
Most symbols denote functions or operators. A monadic function takes as its argument the result of evaluating everything to its right. (Moderated in the usual way by parentheses.) A dyadic function has another argument, the first item of data on its left. Many symbols denote both monadic and dyadic functions, interpreted according to use.
The conjugate transpose of a matrix with real entries reduces to the transpose of , as the conjugate of a real number is the number itself. The conjugate transpose can be motivated by noting that complex numbers can be usefully represented by 2 × 2 {\displaystyle 2\times 2} real matrices, obeying matrix addition and multiplication: [ 3 ]
(This is just a consequence of the fact that the inverse of an N×M transpose is an M×N transpose, although it is also easy to show explicitly that P −1 composed with P gives the identity.) As proved by Cate & Twigg (1977), the number of fixed points (cycles of length 1) of the permutation is precisely 1 + gcd( N −1, M −1) , where gcd is ...
where () denotes the matrix transpose. The explicit form that C {\displaystyle C} takes is dependent on the specific representation chosen for the gamma matrices, up to an arbitrary phase factor. This is because although charge conjugation is an automorphism of the gamma group , it is not an inner automorphism (of the group).