When.com Web Search

  1. Ad

    related to: capacitor impedance vs frequency calculator worksheet free

Search results

  1. Results From The WOW.Com Content Network
  2. Constant phase element - Wikipedia

    en.wikipedia.org/wiki/Constant_phase_element

    In electronics, a constant phase element is an equivalent electrical circuit component that models the behaviour of a double layer, that is, an imperfect capacitor (see double-layer capacitance). Constant phase elements are also used in equivalent circuit modeling and data fitting of electrochemical impedance spectroscopy data.

  3. RLC circuit - Wikipedia

    en.wikipedia.org/wiki/RLC_circuit

    The resonant frequency is defined as the frequency at which the impedance of the circuit is at a minimum. Equivalently, it can be defined as the frequency at which the impedance is purely real (that is, purely resistive). This occurs because the impedances of the inductor and capacitor at resonant are equal but of opposite sign and cancel out.

  4. Electrical impedance - Wikipedia

    en.wikipedia.org/wiki/Electrical_impedance

    In electrical engineering, impedance is the opposition to alternating current presented by the combined effect of resistance and reactance in a circuit. [1]Quantitatively, the impedance of a two-terminal circuit element is the ratio of the complex representation of the sinusoidal voltage between its terminals, to the complex representation of the current flowing through it. [2]

  5. RC time constant - Wikipedia

    en.wikipedia.org/wiki/RC_time_constant

    The following formulae use it, assuming a constant voltage applied across the capacitor and resistor in series, to determine the voltage across the capacitor against time: Charging toward applied voltage (initially zero voltage across capacitor, constant V 0 across resistor and capacitor together) V 0 : V ( t ) = V 0 ( 1 − e − t / τ ...

  6. Capacitor - Wikipedia

    en.wikipedia.org/wiki/Capacitor

    The reactance and impedance of a capacitor are respectively = = = = = where j is the imaginary unit and ω is the angular frequency of the sinusoidal signal. The − j phase indicates that the AC voltage V = ZI lags the AC current by 90°: the positive current phase corresponds to increasing voltage as the capacitor charges; zero current ...

  7. Q factor - Wikipedia

    en.wikipedia.org/wiki/Q_factor

    The Q factor is a parameter that describes the resonance behavior of an underdamped harmonic oscillator (resonator). Sinusoidally driven resonators having higher Q factors resonate with greater amplitudes (at the resonant frequency) but have a smaller range of frequencies around that frequency for which they resonate; the range of frequencies for which the oscillator resonates is called the ...

  8. Dissipation factor - Wikipedia

    en.wikipedia.org/wiki/Dissipation_factor

    The loss tangent is defined by the angle between the capacitor's impedance vector and the negative reactive axis. If the capacitor is used in an AC circuit, the dissipation factor due to the non-ideal capacitor is expressed as the ratio of the resistive power loss in the ESR to the reactive power oscillating in the capacitor, or

  9. Capacitor types - Wikipedia

    en.wikipedia.org/wiki/Capacitor_types

    The self-resonant frequency is the lowest frequency at which the impedance passes through a minimum. For any AC application the self-resonant frequency is the highest frequency at which capacitors can be used as a capacitive component. This is critically important for decoupling high-speed logic circuits from the power supply.