When.com Web Search

  1. Ads

    related to: robertson seymour theorem equation worksheet grade 10

Search results

  1. Results From The WOW.Com Content Network
  2. Robertson–Seymour theorem - Wikipedia

    en.wikipedia.org/wiki/RobertsonSeymour_theorem

    The RobertsonSeymour theorem is named after mathematicians Neil Robertson and Paul D. Seymour, who proved it in a series of twenty papers spanning over 500 pages from 1983 to 2004. [3] Before its proof, the statement of the theorem was known as Wagner's conjecture after the German mathematician Klaus Wagner , although Wagner said he never ...

  3. Hadwiger conjecture (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Hadwiger_conjecture_(graph...

    Robertson, Seymour & Thomas (1993) proved the conjecture for =, also using the four color theorem; their paper with this proof won the 1994 Fulkerson Prize. It follows from their proof that linklessly embeddable graphs , a three-dimensional analogue of planar graphs, have chromatic number at most five. [ 3 ]

  4. Graph structure theorem - Wikipedia

    en.wikipedia.org/wiki/Graph_structure_theorem

    The theorem is stated in the seventeenth of a series of 23 papers by Neil Robertson and Paul Seymour. Its proof is very long and involved. Its proof is very long and involved. Kawarabayashi & Mohar (2007) and Lovász (2006) are surveys accessible to nonspecialists, describing the theorem and its consequences.

  5. Graph minor - Wikipedia

    en.wikipedia.org/wiki/Graph_minor

    Another result relating the four-color theorem to graph minors is the snark theorem announced by Robertson, Sanders, Seymour, and Thomas, a strengthening of the four-color theorem conjectured by W. T. Tutte and stating that any bridgeless 3-regular graph that requires four colors in an edge coloring must have the Petersen graph as a minor. [15]

  6. Neil Robertson (mathematician) - Wikipedia

    en.wikipedia.org/wiki/Neil_Robertson_(mathematician)

    Robertson has won the Fulkerson Prize three times, in 1994 for his work on the Hadwiger conjecture, in 2006 for the RobertsonSeymour theorem, and in 2009 for his proof of the strong perfect graph theorem. [11] He also won the Pólya Prize (SIAM) in 2004, the OSU Distinguished Scholar Award in 1997, and the Waterloo Alumni Achievement Medal ...

  7. Pathwidth - Wikipedia

    en.wikipedia.org/wiki/Pathwidth

    In the first of their famous series of papers on graph minors, Neil Robertson and Paul Seymour define a path-decomposition of a graph G to be a sequence of subsets X i of vertices of G, with two properties: For each edge of G, there exists an i such that both endpoints of the edge belong to subset X i, and

  8. List of theorems - Wikipedia

    en.wikipedia.org/wiki/List_of_theorems

    Robbins theorem (graph theory) RobertsonSeymour theorem (graph theory) Robin's theorem (number theory) Robinson's joint consistency theorem (mathematical logic) Rokhlin's theorem (geometric topology) Rolle's theorem ; Rosser's theorem (number theory) Rouché's theorem (complex analysis) Rouché–Capelli theorem (Linear algebra)

  9. Branch-decomposition - Wikipedia

    en.wikipedia.org/wiki/Branch-decomposition

    Branch decomposition of a grid graph, showing an e-separation.The separation, the decomposition, and the graph all have width three. In graph theory, a branch-decomposition of an undirected graph G is a hierarchical clustering of the edges of G, represented by an unrooted binary tree T with the edges of G as its leaves.