When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Spreadsheet - Wikipedia

    en.wikipedia.org/wiki/Spreadsheet

    Formulas in the B column multiply values from the A column using relative references, and the formula in B4 uses the SUM() function to find the sum of values in the B1:B3 range. A formula identifies the calculation needed to place the result in the cell it is contained within. A cell containing a formula, therefore, has two display components ...

  3. VIKOR method - Wikipedia

    en.wikipedia.org/wiki/VIKOR_method

    These strategies could be compromised by v = 0.5, and here v is modified as = (n + 1)/ 2n (from v + 0.5(n-1)/n = 1) since the criterion (1 of n) related to R is included in S, too. Step 4. Rank the alternatives, sorting by the values S, R and Q, from the minimum value. The results are three ranking lists. Step 5.

  4. Huber loss - Wikipedia

    en.wikipedia.org/wiki/Huber_loss

    As defined above, the Huber loss function is strongly convex in a uniform neighborhood of its minimum =; at the boundary of this uniform neighborhood, the Huber loss function has a differentiable extension to an affine function at points = and =. These properties allow it to combine much of the sensitivity of the mean-unbiased, minimum-variance ...

  5. Subset sum problem - Wikipedia

    en.wikipedia.org/wiki/Subset_sum_problem

    The subset sum problem (SSP) is a decision problem in computer science. In its most general formulation, there is a multiset of integers and a target-sum , and the question is to decide whether any subset of the integers sum to precisely . [1] The problem is known to be NP-complete.

  6. Assignment problem - Wikipedia

    en.wikipedia.org/wiki/Assignment_problem

    Usually the weight function is viewed as a square real-valued matrix C, so that the cost function is written down as: ∑ a ∈ A C a , f ( a ) {\displaystyle \sum _{a\in A}C_{a,f(a)}} The problem is "linear" because the cost function to be optimized as well as all the constraints contain only linear terms.

  7. Least absolute deviations - Wikipedia

    en.wikipedia.org/wiki/Least_absolute_deviations

    Least absolute deviations (LAD), also known as least absolute errors (LAE), least absolute residuals (LAR), or least absolute values (LAV), is a statistical optimality criterion and a statistical optimization technique based on minimizing the sum of absolute deviations (also sum of absolute residuals or sum of absolute errors) or the L 1 norm of such values.

  8. Multi-objective optimization - Wikipedia

    en.wikipedia.org/wiki/Multi-objective_optimization

    Multi-objective optimization or Pareto optimization (also known as multi-objective programming, vector optimization, multicriteria optimization, or multiattribute optimization) is an area of multiple-criteria decision making that is concerned with mathematical optimization problems involving more than one objective function to be optimized simultaneously.

  9. Mean squared error - Wikipedia

    en.wikipedia.org/wiki/Mean_squared_error

    The MSE could be a function of unknown parameters, in which case any estimator of the MSE based on estimates of these parameters would be a function of the data (and thus a random variable). If the estimator θ ^ {\displaystyle {\hat {\theta }}} is derived as a sample statistic and is used to estimate some population parameter, then the ...