Search results
Results From The WOW.Com Content Network
Furthermore, a global maximum (or minimum) either must be a local maximum (or minimum) in the interior of the domain, or must lie on the boundary of the domain. So a method of finding a global maximum (or minimum) is to look at all the local maxima (or minima) in the interior, and also look at the maxima (or minima) of the points on the ...
The range of a variable is given as the set of possible values that that variable can hold. In the case of an integer, the variable definition is restricted to whole numbers only, and the range will cover every number within its range (including the maximum and minimum).
A snippet of C code which prints "Hello, World!". The syntax of the C programming language is the set of rules governing writing of software in C. It is designed to allow for programs that are extremely terse, have a close relationship with the resulting object code, and yet provide relatively high-level data abstraction.
There are four possibilities, the first two cases where c is an extremum, the second two where c is a (local) saddle point: If n is odd and (+) <, then c is a local maximum. If n is odd and (+) >, then c is a local minimum.
Is there an efficient way to find the global maximum/minimum? Take for example the sine integral. It has an infinite number of local maxima and minima. So how can one decide which one is the global maximum/minimum? --Abdull 17:04, 17 May 2007 (UTC) Not in the absolutely general case.
The extreme value theorem was originally proven by Bernard Bolzano in the 1830s in a work Function Theory but the work remained unpublished until 1930. Bolzano's proof consisted of showing that a continuous function on a closed interval was bounded, and then showing that the function attained a maximum and a minimum value.
The maximum of a subset of a preordered set is an element of which is greater than or equal to any other element of , and the minimum of is again defined dually. In the particular case of a partially ordered set , while there can be at most one maximum and at most one minimum there may be multiple maximal or minimal elements.
If () = = and () () for all x in an open interval that contains c, except possibly c itself, =. This is known as the squeeze theorem . [ 1 ] [ 2 ] This applies even in the cases that f ( x ) and g ( x ) take on different values at c , or are discontinuous at c .